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Announcements . . .

• Lectures 1-5 have been updated on the web (fixed a few typos).

• The Java GUI Tutorial will be held in Otto Maass 217 at 18:15.
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Last lecture . . .

• A procedure is a mapping from inputs to outputs, with possible
modification of inputs.

• Its specification describes its behavior, providing a contract
between users and implementors.

• The specification does not change when the implementation
changes. This provides locality and modifiability.

• Specifications should have minimal constraining.

• Desirable properties include simplicity and generality.

• Implementations should be total when possible, and may be
partial when the context of use is limited and controlled, such
as for private helper procedures.
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Data Abstraction

• Data abstraction can be achieved through the use of both
objects and operations.

• If only objects were provided :

– The user would implement programs in terms of the data
representation.

– When the representation changed, the program would have
to change.

• Therefore, the user has to call the operations to access the data
type :

– When the representation changes, the operation
implementations changes.

– However, the program does not need to change.
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Specification of Data Abstractions

• Data types are defined by interfaces and classes :

<visibility> class dname {

// OVERVIEW: brief description of the date types

// behavior

// constructors

// specs for constructors

// methods

// specs for methods

}
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Components of Specification

• Overview gives a description of the abstraction in terms of well
understood concepts (e.g. mathematical sets { }, union + . . . ).
It also specifies if the type is mutable or immutable.

• Constructors specify how new objects are created.

• Methods specify how objects are accessed once they have been
created.

• Constructors and Methods belong to objects, not classes.

– Because they have no static keyword in header.
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Abstract Data Type

• To better illustrate the concept of data abstraction, we will use
two abstract data type:

– IntSet

– Polynomial

• Specification is preliminary version of the class.
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Specification of IntSet

public class IntSet {

// OVERVIEW: IntSets are mutable, unbounded sets of integers

// A typical IntSet is {x1,...,xn}

// constructors

public IntSet ()

// EFFECTS: Initializes this to be empty

// methods

public void insert (int x)

// MODIFIES: this

// EFFECTS: Adds x to the elements of this,

// i.e. this_post = this + {x}

public void remove (int x)

// MODIFIES: this

// EFFECTS: Removes x from this, i.e. this_post = this - {x}
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Specification of IntSet (cont.)

// observers

public boolean isIn (int x)

// EFFECTS: if x is in this returns true else returns false

public int size ( )

// EFFECTS: Returns the cardinality of this

public int choose ( ) throws EmptyException

// EFFECTS: if this is empty, throws EmptyException else

// returns an arbitrary element of this

}
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Comments about IntSet

• Only one parameterless constructor is enough because the type
is mutable.

• Mutators insert and remove have MODIFIES clause because
the modify the object itself (this).

• Observers isIn, size and choose do not change the state of the
object.

– Note: Observers are allowed to modify objects other than
this, but usually don’t.

• The method choose returns an arbitrary element of the InSet.
Thus it is non-deterministic.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 10



Specification of immutable Poly

public class Poly {

// OVERVIEW: Polys are immutable polynomials with integer

// coefficients

// A typical Poly is c0 + c1x + c2x^2 + c5x^5 + ... + cnx^n

// constructors

public Poly()

// EFFECTS: Initializes this to be the zero polynomial

pulic Poly(int c, int n) throws NegativeExponentException

// EFFECTS: If n < 0 throws NegativeExponentException else

// initializes this to be the Poly cx^n
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Specification of Poly (cont.)

// methods

public int degree ()

// EFFECTS: Returns the degree of this, i.e. the largest exponent

// with a non-zero coef. Returns 0 if this is the zero Poly

public int coeff (int d)

// EFFECTS: Returns coefficient of the term of this whose

// exponent is d

public Poly add (Poly q) throws NullPointerException

// EFFECTS: If q is null throws NullPointerException else returns

// the Poly this + q

public Poly mult (Poly q) throws NullPointerException

// EFFECTS: If q is null throws NullPointerException else returns

// the Poly this * q

public Poly sub (Poly q) throws NullPointerException

// EFFECTS: If q is null throws NullPointerException else returns

// the Poly this - q

public Poly minus () {

// EFFECTS: Returns the Poly - this

}
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Comments about Poly

• Poly has two constructors: zero and arbitrary monomial
(overloaded)

• Arbitrary polynomials are created by adding and multiplying
polynomials, each time creating a new Poly.

– type is immutable

– no Mutators
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Quiz!

Assuming memory has just been garbage collected and no dead
object remains, after the following two statements, how many dead
Poly objects does the heap have?

Poly p = new Poly();

p =

p.add((new Poly(5,2)).add((new Poly(3,1)).minus().add(new Poly(9,0))));

What will be the representation of the Polynomial in p after the
first and after the second statement?
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Using IntSet Abstraction

• The following function builds an IntSet from a given array.

public static IntSet buildIntSet (int[] a)

throws NullPointerException {

// EFFECTS: If p is null throws NullPointerException

// else returns a set containing an entry for each

// distinct element of a

IntSet s = new IntSet();

for (int i = 0; i < a.length(); i++) {

s.insert(a[i]);

}

return s;

}
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Using Poly Abstraction

• The following function takes a polynomial and calculates the
differential.

public static Poly differential (Poly p)

throws NullPointerException {

// EFFECTS: If p is null throws NullPointerException

// else returns the Poly obtained by differentiating p

Poly q = new Poly ();

for (int i = 1; i <= p.degree(); i++) {

q = q.add(new Poly(p.coeff(i) * i, i - 1));

}

return q;

}
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buildIntSet and differential

• These functions are not declared in IntSet or Poly, but in
another class that uses IntSet and Poly.

• If the implementation of the data abstraction changes, the
methods buildIntSet and differential will continue to work
correctly.

• If the methods buildIntSet and differential are implemented
incorrectly, it will not affect the correctness of the abstraction,
nor can they break other code that uses the abstraction.

• However, buildIntSet and differential may be slightly slower
that if they were implemented behind the abstraction barrier.
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Implementing Data Abstractions

• One data abstraction can have many different possible
representations (or reps).

• An implementation makes sure that the representation :

– is initialized (constructors)

– used and modified (methods)

– correctly according to the data abstraction

• A good representation allows all operations to be implemented
in a reasonably simple and efficient manner.

– Frequent operations must run quickly.

• IntSet rep as Vector: allow duplicate elements?

– insert will be faster

– remove will be slower

– isIn will be slower for false, faster for true
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Instance variables

• A representation typically has a number of components.

• Each component is stored in an instance variable.

• Instance variables should be declared private :

– to prevent a user from breaking the abstraction

– to allow re-implementation without breaking the user’s code

• Instance variables should not be declared static.
(i.e. there is one of each per object)

• Static variables occur once per class.
(equivalent to global variables in other languages)
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Implementation of Poly

public class Poly {

// OVERVIEW:

private int [ ] trms;

private int deg;

// constructors

public Poly() {

// EFFECTS: Initializes this to be the zero polynomial

trms = new int[1];

deg = 0;

}
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Poly: more constructors

public Poly(int c, int n)

throws NegativeExponentException {

// EFFECTS: If n < 0 throws NegativeExponentException else

// initializes this to be the Poly cx^n

if (n < 0)

throw NegativeExponentException("Poly(int,int) constr");

if (c == 0) {trms = new int[1]; deg = 0; return;}

trms = new int[n+1];

for (int i = 0; i < n; i++) trms[i] = 0;

trms[n] = c;

deg = n;

}

private Poly (int n) {

trms = new int[n+1];

deg = n;

}
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Poly: Observers

// methods

public int degree () {

// EFFECTS: Returns the degree of this, i.e. the largest

// exponent with a non-zero coefficient. Returns 0

// if this is the zero Poly

return deg;

}

public int coeff (int d) {

// EFFECTS: Returns the coefficient of term

// of this with exponent d

if (d < 0 || d > deg) return 0;

else return trms[d];

}
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Poly: Addition

public Poly add (Poly q)

throws NullPointerException {

// EFFECTS: If q is null throws NullPointerException

// else returns the Poly this + q

Poly la, sm;

int i, newdeg;

if (deg > q.deg) {la = this; sm = q;}

else {la = q; sm = this;}

newdeg = la.deg; // new degree is the larger degree

if (deg == q.deg) // unless there are trailing zeros

for (int k = deg; k > 0; k--) {

if (trms[k] + q.trms[k] != 0) break;

else newdeg--;

Poly r = new Poly(newdeg); // get a new Poly

for (i = 0; i < sm.deg && i <= newdeg; i++)

r.trms[i] = sm.trms[i] + la.trms[i];

for (int j = i; j <= newdeg; j++)

r.trms[j] = la.trms[j];

return r;

}
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Poly: Minus and Subtraction

public Poly minus () {

// EFFECTS: Returns the Poly - this;

Poly r = new (Poly(deg));

for (int i = 0; i < deg; i++) r.trms[i] = - trms[i];

return r;

}

public Poly sub (Poly q)

throws NullPointerException {

// EFFECTS: If q is null throws NullPointerException

// else returns the Poly this - q;

return add (q.minus());

}
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Poly: Multiplication

public Poly mul (Poly q)

throws NullPointerException {

// EFFECTS: If q is null throws NullPointerException

// else returns the Poly this * q

if ((q.deg == 0 && q.trms[0] == 0)

|| (deg == 0 && trms[0] == 0))

return new Poly();

Poly r = new poly(deq + q.deg);

for (int i = 0; i <= deg; i++)

for (int j = 0; j <= q.deg; j++)

r.trms[i+j] = r.trms[i+j] + trms[i] * q.trms[j];

return r;

}

}
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Poly Implementation

• The Poly representation uses

– an array storing coefficients (immutable)

– an integer for storing the degree (for convenience)

• Note that many methods access private instance variables from
other objects as well as this.
(Methods have access to private instance variables of objects of
the same class.)

• The method sub is implemented in terms of other methods.

• The methods add, mul and minus use private constructor
Poly(int) and initialize the new Poly themselves.
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Alternative Poly Implementation

• What if most of the terms have zero coefficients ?

– Previous implementation contains mostly zeroes.

– Maybe we could store only the terms with non-zero
coefficients,

• We could solve this problem with 2 vectors:

– private Vector coeffs; // the non-zero coefficients

– private Vector exps; // the associated exponents

• However, this is awkward since Vectors have to be precisely
lined up.

• Instead, we can use one vector storing both coef and exps.
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Records

// inner class

class Pair {

// OVERVIEW: a record type

int coeff;

int exp;

Pair (int c, int n) {coeff = c; exp = n;}

}

• A record is simply a collection of instance variables and a
constructor to initialize them. They have no methods.

• You can declare Pair inside Poly as an inner class.

• Do not abuse records. They are only to be used as passive
storage within a full-blown data abstraction.
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Other methods: equals()

• Two objects are equal if they are behaviorally equivalent.

– it is not possible to distinguish between them using any
sequence of calls to the objects

• Mutable objects are equals only if they are the same objects.

– Otherwise you can change one of them and prove they are
not the same

– equals inherited from Object same as ==

• Immutable objects are equals if they have the same state.

– They must implement equals themselves.

• Several equals method can be found in an class.
For example, in the Poly class, we could find :

– public boolean equals (Poly q)

– public boolean equals (Object z)
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Other methods: hashCode()

• The method int hashCode() is defined by Object.

• It is used in hashtables to provide a unique number for each
distinct object.

• Objects that are equal should have the same hashCode:

– Mutable objects do not have to define hashCode.

– Immutable objects have to define hashCode
(otherwise they will have the same hashCode only if they
are ==)

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 30



Other methods: similar()

• Two objects are similar if they have the same state at the
moment of comparison.

• This is Weaker notion of equality:

– Similar immutable objects are always equal.

– Similar mutable objects may not be equal.

• Note that == is considered stronger than equals and that
equals is stronger than similar.
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Other methods: clone()

• The method Object clone () makes a copy of its object.

• The copy should be similar to the original.

• The default implementation from Object simply makes a new
Object and copies all instance variables (shallow copy).

• This is sufficient for mutable objects.

• The method clone() is made accessible by declaring:

public myClass implements Cloneable { . . .

• Mutable objects should implement their own cloning operation
(using a deep copy).
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Other methods: toString()

• The method String toString() should return a String showing
the type and current state of the object.

• The default implementation from Object shows type and
hashCode.

– This is not very informative.

– Objects should implement toString themselves.
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Summary

• Data Abstraction allows us to separate the external interface of
an object from its inner working.

• When successful, Data Abstraction allows us to modify the
implementation of an object without modifying the other
objects using it.

• Differences between mutable and immutable objects.

• Examples with IntSet and Poly.

• Some methods from object may need to be overrided:

– equals()

– similar()

– hashCode()

– clone()

– toString()
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Tool of the day: Jikes

• Jikes is a compiler that translate java source files into bytecode.

• In other words, it’s an alternative to javac.

• Why would we need another Java compiler?

– Open Source : free distribution

– Strictly Java Compatible : no superset or subset of Java

– High performance: large projects

– Dependency analysis : incremental build and makefile
generation

• For now, you still need the Sun’s JDK to be installed to have
the class libraries.

• Not very user friendly.
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