
Data Abstraction

Comp-303 : Programming Techniques

Lecture 6

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 1

Announcements . . .

• Lectures 1-5 have been updated on the web (fixed a few typos).

• The Java GUI Tutorial will be held in Otto Maass 217 at 18:15.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 2

Last lecture . . .

• A procedure is a mapping from inputs to outputs, with possible
modification of inputs.

• Its specification describes its behavior, providing a contract
between users and implementors.

• The specification does not change when the implementation
changes. This provides locality and modifiability.

• Specifications should have minimal constraining.

• Desirable properties include simplicity and generality.

• Implementations should be total when possible, and may be
partial when the context of use is limited and controlled, such
as for private helper procedures.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 3

Data Abstraction

• Data abstraction can be achieved through the use of both
objects and operations.

• If only objects were provided :

– The user would implement programs in terms of the data
representation.

– When the representation changed, the program would have
to change.

• Therefore, the user has to call the operations to access the data
type :

– When the representation changes, the operation
implementations changes.

– However, the program does not need to change.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 4

Specification of Data Abstractions

• Data types are defined by interfaces and classes :

<visibility> class dname {

// OVERVIEW: brief description of the date types

// behavior

// constructors

// specs for constructors

// methods

// specs for methods

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 5

Components of Specification

• Overview gives a description of the abstraction in terms of well
understood concepts (e.g. mathematical sets { }, union + . . .).
It also specifies if the type is mutable or immutable.

• Constructors specify how new objects are created.

• Methods specify how objects are accessed once they have been
created.

• Constructors and Methods belong to objects, not classes.

– Because they have no static keyword in header.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 6

Abstract Data Type

• To better illustrate the concept of data abstraction, we will use
two abstract data type:

– IntSet

– Polynomial

• Specification is preliminary version of the class.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 7

Specification of IntSet

public class IntSet {

// OVERVIEW: IntSets are mutable, unbounded sets of integers

// A typical IntSet is {x1,...,xn}

// constructors

public IntSet ()

// EFFECTS: Initializes this to be empty

// methods

public void insert (int x)

// MODIFIES: this

// EFFECTS: Adds x to the elements of this,

// i.e. this_post = this + {x}

public void remove (int x)

// MODIFIES: this

// EFFECTS: Removes x from this, i.e. this_post = this - {x}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 8

Specification of IntSet (cont.)

// observers

public boolean isIn (int x)

// EFFECTS: if x is in this returns true else returns false

public int size ()

// EFFECTS: Returns the cardinality of this

public int choose () throws EmptyException

// EFFECTS: if this is empty, throws EmptyException else

// returns an arbitrary element of this

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 9

Comments about IntSet

• Only one parameterless constructor is enough because the type
is mutable.

• Mutators insert and remove have MODIFIES clause because
the modify the object itself (this).

• Observers isIn, size and choose do not change the state of the
object.

– Note: Observers are allowed to modify objects other than
this, but usually don’t.

• The method choose returns an arbitrary element of the InSet.
Thus it is non-deterministic.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 10

Specification of immutable Poly

public class Poly {

// OVERVIEW: Polys are immutable polynomials with integer

// coefficients

// A typical Poly is c0 + c1x + c2x^2 + c5x^5 + ... + cnx^n

// constructors

public Poly()

// EFFECTS: Initializes this to be the zero polynomial

pulic Poly(int c, int n) throws NegativeExponentException

// EFFECTS: If n < 0 throws NegativeExponentException else

// initializes this to be the Poly cx^n

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 11

Specification of Poly (cont.)

// methods

public int degree ()

// EFFECTS: Returns the degree of this, i.e. the largest exponent

// with a non-zero coef. Returns 0 if this is the zero Poly

public int coeff (int d)

// EFFECTS: Returns coefficient of the term of this whose

// exponent is d

public Poly add (Poly q) throws NullPointerException

// EFFECTS: If q is null throws NullPointerException else returns

// the Poly this + q

public Poly mult (Poly q) throws NullPointerException

// EFFECTS: If q is null throws NullPointerException else returns

// the Poly this * q

public Poly sub (Poly q) throws NullPointerException

// EFFECTS: If q is null throws NullPointerException else returns

// the Poly this - q

public Poly minus () {

// EFFECTS: Returns the Poly - this

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 12

Comments about Poly

• Poly has two constructors: zero and arbitrary monomial
(overloaded)

• Arbitrary polynomials are created by adding and multiplying
polynomials, each time creating a new Poly.

– type is immutable

– no Mutators

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 13

Quiz!

Assuming memory has just been garbage collected and no dead
object remains, after the following two statements, how many dead
Poly objects does the heap have?

Poly p = new Poly();

p =

p.add((new Poly(5,2)).add((new Poly(3,1)).minus().add(new Poly(9,0))));

What will be the representation of the Polynomial in p after the
first and after the second statement?

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 14

Using IntSet Abstraction

• The following function builds an IntSet from a given array.

public static IntSet buildIntSet (int[] a)

throws NullPointerException {

// EFFECTS: If p is null throws NullPointerException

// else returns a set containing an entry for each

// distinct element of a

IntSet s = new IntSet();

for (int i = 0; i < a.length(); i++) {

s.insert(a[i]);

}

return s;

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 15

Using Poly Abstraction

• The following function takes a polynomial and calculates the
differential.

public static Poly differential (Poly p)

throws NullPointerException {

// EFFECTS: If p is null throws NullPointerException

// else returns the Poly obtained by differentiating p

Poly q = new Poly ();

for (int i = 1; i <= p.degree(); i++) {

q = q.add(new Poly(p.coeff(i) * i, i - 1));

}

return q;

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 16

buildIntSet and differential

• These functions are not declared in IntSet or Poly, but in
another class that uses IntSet and Poly.

• If the implementation of the data abstraction changes, the
methods buildIntSet and differential will continue to work
correctly.

• If the methods buildIntSet and differential are implemented
incorrectly, it will not affect the correctness of the abstraction,
nor can they break other code that uses the abstraction.

• However, buildIntSet and differential may be slightly slower
that if they were implemented behind the abstraction barrier.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 17

Implementing Data Abstractions

• One data abstraction can have many different possible
representations (or reps).

• An implementation makes sure that the representation :

– is initialized (constructors)

– used and modified (methods)

– correctly according to the data abstraction

• A good representation allows all operations to be implemented
in a reasonably simple and efficient manner.

– Frequent operations must run quickly.

• IntSet rep as Vector: allow duplicate elements?

– insert will be faster

– remove will be slower

– isIn will be slower for false, faster for true

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 18

Instance variables

• A representation typically has a number of components.

• Each component is stored in an instance variable.

• Instance variables should be declared private :

– to prevent a user from breaking the abstraction

– to allow re-implementation without breaking the user’s code

• Instance variables should not be declared static.
(i.e. there is one of each per object)

• Static variables occur once per class.
(equivalent to global variables in other languages)

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 19

Implementation of Poly

public class Poly {

// OVERVIEW:

private int [] trms;

private int deg;

// constructors

public Poly() {

// EFFECTS: Initializes this to be the zero polynomial

trms = new int[1];

deg = 0;

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 20

Poly: more constructors

public Poly(int c, int n)

throws NegativeExponentException {

// EFFECTS: If n < 0 throws NegativeExponentException else

// initializes this to be the Poly cx^n

if (n < 0)

throw NegativeExponentException("Poly(int,int) constr");

if (c == 0) {trms = new int[1]; deg = 0; return;}

trms = new int[n+1];

for (int i = 0; i < n; i++) trms[i] = 0;

trms[n] = c;

deg = n;

}

private Poly (int n) {

trms = new int[n+1];

deg = n;

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 21

Poly: Observers

// methods

public int degree () {

// EFFECTS: Returns the degree of this, i.e. the largest

// exponent with a non-zero coefficient. Returns 0

// if this is the zero Poly

return deg;

}

public int coeff (int d) {

// EFFECTS: Returns the coefficient of term

// of this with exponent d

if (d < 0 || d > deg) return 0;

else return trms[d];

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 22

Poly: Addition

public Poly add (Poly q)

throws NullPointerException {

// EFFECTS: If q is null throws NullPointerException

// else returns the Poly this + q

Poly la, sm;

int i, newdeg;

if (deg > q.deg) {la = this; sm = q;}

else {la = q; sm = this;}

newdeg = la.deg; // new degree is the larger degree

if (deg == q.deg) // unless there are trailing zeros

for (int k = deg; k > 0; k--) {

if (trms[k] + q.trms[k] != 0) break;

else newdeg--;

Poly r = new Poly(newdeg); // get a new Poly

for (i = 0; i < sm.deg && i <= newdeg; i++)

r.trms[i] = sm.trms[i] + la.trms[i];

for (int j = i; j <= newdeg; j++)

r.trms[j] = la.trms[j];

return r;

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 23

Poly: Minus and Subtraction

public Poly minus () {

// EFFECTS: Returns the Poly - this;

Poly r = new (Poly(deg));

for (int i = 0; i < deg; i++) r.trms[i] = - trms[i];

return r;

}

public Poly sub (Poly q)

throws NullPointerException {

// EFFECTS: If q is null throws NullPointerException

// else returns the Poly this - q;

return add (q.minus());

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 24

Poly: Multiplication

public Poly mul (Poly q)

throws NullPointerException {

// EFFECTS: If q is null throws NullPointerException

// else returns the Poly this * q

if ((q.deg == 0 && q.trms[0] == 0)

|| (deg == 0 && trms[0] == 0))

return new Poly();

Poly r = new poly(deq + q.deg);

for (int i = 0; i <= deg; i++)

for (int j = 0; j <= q.deg; j++)

r.trms[i+j] = r.trms[i+j] + trms[i] * q.trms[j];

return r;

}

}

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 25

Poly Implementation

• The Poly representation uses

– an array storing coefficients (immutable)

– an integer for storing the degree (for convenience)

• Note that many methods access private instance variables from
other objects as well as this.
(Methods have access to private instance variables of objects of
the same class.)

• The method sub is implemented in terms of other methods.

• The methods add, mul and minus use private constructor
Poly(int) and initialize the new Poly themselves.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 26

Alternative Poly Implementation

• What if most of the terms have zero coefficients ?

– Previous implementation contains mostly zeroes.

– Maybe we could store only the terms with non-zero
coefficients,

• We could solve this problem with 2 vectors:

– private Vector coeffs; // the non-zero coefficients

– private Vector exps; // the associated exponents

• However, this is awkward since Vectors have to be precisely
lined up.

• Instead, we can use one vector storing both coef and exps.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 27

Records

// inner class

class Pair {

// OVERVIEW: a record type

int coeff;

int exp;

Pair (int c, int n) {coeff = c; exp = n;}

}

• A record is simply a collection of instance variables and a
constructor to initialize them. They have no methods.

• You can declare Pair inside Poly as an inner class.

• Do not abuse records. They are only to be used as passive
storage within a full-blown data abstraction.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 28

Other methods: equals()

• Two objects are equal if they are behaviorally equivalent.

– it is not possible to distinguish between them using any
sequence of calls to the objects

• Mutable objects are equals only if they are the same objects.

– Otherwise you can change one of them and prove they are
not the same

– equals inherited from Object same as ==

• Immutable objects are equals if they have the same state.

– They must implement equals themselves.

• Several equals method can be found in an class.
For example, in the Poly class, we could find :

– public boolean equals (Poly q)

– public boolean equals (Object z)

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 29

Other methods: hashCode()

• The method int hashCode() is defined by Object.

• It is used in hashtables to provide a unique number for each
distinct object.

• Objects that are equal should have the same hashCode:

– Mutable objects do not have to define hashCode.

– Immutable objects have to define hashCode
(otherwise they will have the same hashCode only if they
are ==)

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 30

Other methods: similar()

• Two objects are similar if they have the same state at the
moment of comparison.

• This is Weaker notion of equality:

– Similar immutable objects are always equal.

– Similar mutable objects may not be equal.

• Note that == is considered stronger than equals and that
equals is stronger than similar.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 31

Other methods: clone()

• The method Object clone () makes a copy of its object.

• The copy should be similar to the original.

• The default implementation from Object simply makes a new
Object and copies all instance variables (shallow copy).

• This is sufficient for mutable objects.

• The method clone() is made accessible by declaring:

public myClass implements Cloneable { . . .

• Mutable objects should implement their own cloning operation
(using a deep copy).

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 32

Other methods: toString()

• The method String toString() should return a String showing
the type and current state of the object.

• The default implementation from Object shows type and
hashCode.

– This is not very informative.

– Objects should implement toString themselves.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 33

Summary

• Data Abstraction allows us to separate the external interface of
an object from its inner working.

• When successful, Data Abstraction allows us to modify the
implementation of an object without modifying the other
objects using it.

• Differences between mutable and immutable objects.

• Examples with IntSet and Poly.

• Some methods from object may need to be overrided:

– equals()

– similar()

– hashCode()

– clone()

– toString()

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 34

Tool of the day: Jikes

• Jikes is a compiler that translate java source files into bytecode.

• In other words, it’s an alternative to javac.

• Why would we need another Java compiler?

– Open Source : free distribution

– Strictly Java Compatible : no superset or subset of Java

– High performance: large projects

– Dependency analysis : incremental build and makefile
generation

• For now, you still need the Sun’s JDK to be installed to have
the class libraries.

• Not very user friendly.

February 16, 2004 Lecture 6 – Comp 303 : Programming Techniques Page 35

