
Procedural Abstraction

Comp-303 : Programming Techniques

Lecture 5

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 1

Announcements . . .

• The classroom for Thursday’s tutorial has still not been
determined.

• Pizza and Beverages will be held next Thursday at 17:30, first
floor Trottier.

• Assignment 1 will be handed out . . . now!

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 2

Last lecture . . .

• What is UML and why learn it?

• References and Tools for UML

• Class diagrams

– Elements of a class

– Relations (Hierarchy, Contains, Uses)

– Cardinality

– Notes

– Putting it all together

• State diagrams

• Sequence diagrams

• Requirements & Specifications

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 3

Procedural abstraction

• Abstracting a single action using parameterization and
specification.

• Parameterization abstracts from the identity of the data being
used, allowing the procedure to be used in more situations.

– relevant: presence, number, types of parameters

– irrelevant: identity of parameters

• Specification abstracts from the realization of the action,
allowing multiple implementations.

– relevant: what is done

– irrelevant: how it is done

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 4

Benefits

• Benefits of abstraction by specification

– Locality

– The implementation of an abstraction can be read or
written without needing to examine the implementations
of any other abstractions.

– The abstraction can be used without examining its
implementation.

– Modifiability
– An abstraction can be re-implemented without requiring

changes to any abstractions that use it.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 5

Specifications

• Specifications should be precise.

• Specifications can be written in a formal language or in an
informal language.

– Formal specification languages have a precise meaning and
can be checked automatically or even used to generate code
(Comp 304).

– Informal specifications are easier to read or write but
harder to give precise meaning.
We will use informal English in comments to define
specifications.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 6

Specifications of procedural abstractions

• A function header is formal form of specification :

– name

– order and type of parameters

– return type

– visibility

• We can improve on this by adding some informal specification :

– REQUIRES specifies use constraints

– MODIFIES lists modified inputs/side-effects

– EFFECTS describes behavior for inputs complying to
requirements, outputs and modifications

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 7

An example: SquareRoot

public float squareRoot (float x) {

// REQUIRES: x should be positive

// MODIFIES: nothing

// EFFECTS: returns an approximation of

square root of x

}

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 8

Another example: Arrays

public class Arrays {

// OVERVIEW: stand-alone procedures for manipulating arrays of

integers

public static int search (int [] a, int x)

// EFFECTS: if x is in a, returns the index where x is stored

// otherwise returns -1

public static int searchSorted (int [] a, int x)

// REQUIRES: a is sorted in ascending order

// EFFECTS: if x is in a, returns the index where x is stored

// otherwise returns -1

public static void sort (int [] a)

// MODIFIES: a

// EFFECTS: Rearranges the elements of a in ascending order

// e.g. if a = {3,1,6,1} , a_post={1,1,3,6}

}

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 9

Additional explanation: Arrays

• MODIFIES is omitted if no modifications happen.

– In other words, the properties of parameter objects or
global objects are unchanged.

– If modifications does occur, the state before the procedure
is invoked should be related to the state after the procedure
returns (the change should be explained).

• REQUIRES is omitted if the procedure if nothing is expected
of the total.

– In other words, the procedure functions correctly with any
input.

• EFFECTS should always be specified. A function should
always do something.

– Examples can be used to clarify specifications.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 10

New Objects

• In general, with Java, we tend to favor creating new objects
over modifying old ones.

• Since Java is Garbage Collected, old unused objects are
eventually automatically disposed.

• This allows us to turn some mutable objects into immutable
objects.

• The following is an example of favoring object creation over
modifying old ones:

public static int [] boundArray (int [], int n)

// EFFECTS: Returns a new array containing the

// elements of a in the order they appear in a except

// that any elements of a > n are replaced by n

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 11

Implicit Inputs

• Sometime, the parameters of a function are not found in the
function header.

• These parameters are called implicit inputs.

• When using implicit inputs, they should be properly
documented in the specification.

• Here is an example of a function using implicit inputs.

public static void copyLine()

// REQUIRES: System.in contains a line of text

// MODIFIES: System.in and System.out

// EFFECTS: Reads a line of text from System.in, advances cursor

// in System.in to end of line, writes the line on System.out

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 12

Implementing procedures

• Specifications are written first.

• Procedure bodies are added later.

– Implementations should modify only those inputs specified
in MODIFIES clause.

– Implementations should produce results according to
EFFECTS clause if REQUIRES clause holds.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 13

SearchSorted

public static int searchSorted (int [] a, int x) {

// REQUIRES: a is sorted in ascending order

// EFFECTS: if x is in a, returns the index where x is stored

// otherwise returns -1

// uses linear search

...

}

• If a is unsorted, we will get the wrong.

• If a is null, we return -1 (or we could throw an exception)

• Includes comment on algorithm used.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 14

Designing Procedural Abstractions

• Procedures are introduced to shorten the calling code, clarify
structure, and reduce code duplication.

• Sometimes, a piece of code in a procedure can be further
subdivided into another function.

• These subfunctions have a well-defined purpose and allows to
separate details of the subfunction from the main function.

• However, we must be careful. Further decomposition could be
counter-productive.

• Rule of thumb #1: if you have trouble naming the
subprocedure, then it probably shouldn’t be separated.

• Rule of thumb #2: if you see almost identical code repeated
twice, then it is probably useful to define a procedure.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 15

Properties of procedures

• Minimally constraining : a specification should constrain details
of the procedure only to the extent necessary. Only details that
matter to the user are constrained to leave the implementor the
greatest freedom for efficient implementations.

• Undetermined : a procedure is considered undetermined if the
acceptable output is a set (as opposed to a unique output).

• Deterministic Implementation: these procedures will produce
exactly the same output when give the same input.
Undetermined procedures can be non-deterministic, but it
usually takes extra program effort.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 16

Properties of procedures

• Generality : a specification is more general if it can handle a
larger class of inputs.
For example: working with any size of array instead of fixed
size

• Simplicity : procedures should have a well-defined purpose, easy
to explain, independent of context of use. If it is hard to name
the procedure there may be a problem.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 17

Partial vs. total procedures

• A procedure is total if its behavior is specified for all legal
inputs. Otherwise it is partial.

• Partial procedures are always specified with a REQUIRES
clause. They are less safe than total procedures, and should
only be used:

– when the context of use is limited (private helper
procedures).

– when they enable a substantial benefit such as better
performance.

• Library procedures intended for general use should always be
total.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 18

Summary

• A procedure is a mapping from inputs to outputs, with possible
modification of inputs.

• Its specification describes its behavior, providing a contract
between users and implementors.

• The specification does not change when the implementation
changes. This provides locality and modifiability.

• Specifications should be minimal and can be undetermined /
non-deterministic.

• Desirable properties include simplicity and generality.

• Implementations should be total when possible, and may be
partial when the context of use is limited and controlled, such
as for private helper procedures.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 19

Assignment 1

In this assignment, you must implement the BigInt data abstraction. You may

not use floating point numbers or any of the Big* number classes provided

by Java.

BigInt can store integer numbers from -2^120 to 2^120 no loss of precision.

These numbers must be stored in 4 integers (part1, part2, part3, part4).

a) fill in the bodies of the methods of class BigInt

b) add methods "boolean smallerThan(BigInt other)" and

"boolean largerThan(BigInt other)" with specifications

and test code.

Bonus: add a "BigInt divide(BigInt other)" method with

specifications and test code.

Make sure you respect specifications. This means that a method without

REQUIRES specifications should accept all inputs (Total implementation),

and that a method with REQUIRES specs should preserve those specs.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 20

BigInt class

public class BigInt {

// OVERVIEW: this class implements BigInt numbers

// BigInt numbers consist of a large number store in 4 intergers. You are

// free to choose how the number will be store. The only condition is that

// all four integers (and no other) must be used to store the numerial part

// of the number.

//

// (Can’t start adding float, integers or arrays to store number.)

//

// A BigInt is printed with an apostrophy every three characters.

// for example 123’456’789’123’465’000

// If the number is larger than 2^120 or smaller than -(2^120), the BigInt

// number is "Not a Number" (NaN). Any operation involving a NaN has a NaN

// as a result. For predicates (methods returning a boolean), NaN is

// considered to be larger than any other number. BigInt numbers are

// immutable.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 21

Methods to implement

// -- constructors --

public BigInt (int n) {

// -- inherited from Object --

public String toString () {

public boolean equals (Object o) {

// -- predicates --

public boolean isPositive () {

public boolean isNegative () {

// -- arithmetic --

public BigInt add (BigInt other) {

public BigInt subtract (BigInt other) {

public BigInt multiply (BigInt other) {

public BigInt negation () {

public BigInt absoluteValue () {

public BigInt square () {

public BigInt cube () {

public BigInt power (int degree) {

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 22

Testing

BigInt a = new BigInt(123456789);

BigInt b = new BigInt(2);

BigInt c = new BigInt(-444444444);

BigInt d = new BigInt(999999999);

BigInt f = new BigInt(0);

System.out.println(a);

System.out.println(b);

System.out.println(a.add(b));

System.out.println(a.subtract(b));

System.out.println(a.multiply(b));

System.out.println(a.square());

System.out.println(a.cube());

System.out.println(a.cube().add(a.cube()));

System.out.println(a.subtract(c));

System.out.println(c.power(125));

System.out.println(c.absoluteValue().negation());

System.out.println(c.power(125).multiply(f));

System.out.println(a.equals(a));

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 23

Policies on Cooperation

• You are free to discuss this assignment with your friends.

• You may NOT share code with your friends.

• If you do work with someone, mention it in your header.

• I cannot give a failing grade to students I find cheating . . .

. . . I can report him to the Dean of Science.

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 24

Hints

• Think before you code.

– How am I going to store the numbers?

– What base?

• Obvious trick to make the assignment simpler.

• Create many more test cases.

• Start early. It’s a lot trickier than it looks.

• The assignment is due Tuesday, February 3th at 11:55 pm

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 25

Tool of the day: JCreator

• JCreator is a powerful IDE for Java.

• It provides the user with a wide range of functionality:

– Project management

– Project templates

– Code-completion

– Debugger interface

– Editor with syntax highlighting

– and so on . . .

• It’s Free!

• You can find more information at

http://www.jcreator.com/

February 16, 2004 Lecture 5 – Comp 303 : Programming Techniques Page 26

