
Flyweight

Comp-303 : Programming Techniques

Lecture 20

Alexandre Denault
Computer Science
McGill University

Winter 2004

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 1

Last lecture . . .

• Facade allows us to hide a complex subsystem, thus reduce
coupling and make that subsystem easier to use.

• Adapter allows us to change the interface of a class, thus
allowing us to that class in our hieratic (polymorphic behavior).

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 2

Typical Situation

• Today, our example starts with a word processing application.

• For added flexibility, you would like each letter in the
document to be stored as an object.

• However, representing each character as an object would create
to many object (and add a lot of overhead on the system).

• How can we have the flexibility of having each letter an object
without the overhead?

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 3

Initial Application Architecture

• The text in our word processor application is stored in three
classes: Column, Row and Letter.

• Each document has at least one Column object.

• A Column has one or more Row.

• A Row has one or more Letter.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 4

Too many objects!

Column

RowRow Row

H A R A C T E
C

R

...

... ...

...

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 5

Flyweight

• Pattern Name : Flyweight

• Classification : Structural

• Intent : Use sharing to support large numbers of fine-grained
objects efficiently.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 6

Motivation

• Using the FlyWeight object, we can reuse letter objects.

• The trick is to separate the intrinsic state from the extrinsic
state of each object:

– Intrinsic state: information that’s independent of the
flyweight’s context. This information should be store inside
the flyweight.

– Extrinsic state: information that depends and varies with
the flyweight’s context (thus shouldn’t be shared). This
information should be stored outside the flyweight.

• In our example, the position, the size and the font of the
character is store in the extrinsic state.

• Thus, we are able to share Letter objects.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 7

Motivation (cont.)

• Instead of using a Row for each line of text, we use a Row to
delimit text with a specific style. Thus, the font, style and size
is store in the row.

• Only 256 characters of a given font style need to be created.

• The application keeps track of a flyweight pool, thus allowing it
to reuse existing flyweights.

• Thus the number of flyweight we need is determined by the
number of styles in our document, not the document size.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 8

Motivation (cont.)

Column

RowRow Row... ...

A B C D E F G H I J K L M

N O P Q R S T ZYXWUV

... ...

Flyweight pool

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 9

Applicability

The Flyweight pattern’s effectiveness depends heavily on how and
where it’s used. Flyweight should only be used when all the
following are true:

• An application uses a large number of objects.

• Storage costs are high because of the sheer quantity of objects.

• Most object state can be made extrinsic.

• Objects can be replaced by few shared objects once the
extrinsic state is removed.

• The application doesn’t depend on object identity.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 10

Structure

FlyweightFactory

 GetFlyweight(Key) Flyweight

 Operation(ExtrinsicState)

ConcreteFlyweight

 IntrinsicState

 Operation(ExtrinsicState)

UnSharedFlyweight

 IntrinsicState

 Operation(ExtrinsicState)

Client

if(flyweight(key) exists {

 return existing flyweight

} else {

 create new flyweight

}

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 11

Participants

• Flyweight : declares the interface that flyweights use to act on
extrinsic state.

• ConcreteFlyweight : implements the Flyweight and adds
storage for the intrinsic state (which should be sharable).

• UnsharedConcreteFlyweight: not all Flyweight need to be
shared.

• FlyweightFactory: creates and manages flyweight objects.

• Client: stores the extrinsic state of the flyweights.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 12

Collaborations

• The Client passes the extrinsic state to the flyweight when
invoking operations.

• The Client should never create a Flyweight directly. It should
always use the FlyweightFactory to create new objects.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 13

Consequences

• By increasing the amount of data that is shared, we can
increase our savings in space (memory, disk, etc).

• This saving is heavily influenced by the number of flyweight we
need to create.

• However, the use of Flyweights may introduce some
performance overhead.

• Since some data is stored outside the object, there are some
performance penalties (retrieving that data).

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 14

Implementation

• The first step when building a flyweight is to decide what data
should be intrinsic and what data should be extrinsic.

• This decision is critical since it will heavily influence the
flyweight’s performance.

• The next step is to design the FlyweightFactory.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 15

BTree

300

1 149 150

110 39 8 100 42

Times 24 Times 12 Courrier 12 Times Bold 12 Times Italic 12

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 16

Example

public abstract class Glyph {

public abstract void draw(Context contextValue);

public abstract void insert(Glyph glyphValue, int i);

public abstract void remove(int i);

public abstract void SetFont(Font fontValue);

public abstract Font GetFont();

}

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 17

Example

public class GlyphContext extends Glyph {

Glyph[] glyphList;

Font currentFont;

int index

GlyphContext() {

\\ Create an empty context }

public abstract void draw(Context contextValue) {

\\ draw all glyphs in glyphList at position contextValue }

public abstract void insert(Glyph glyphValue, int i) {

\\ adds the glyph to the context at position i}

public abstract void remove(int iPosition) {

\\ removes the context a position i from the context }

}

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 18

Example

public class Letter extends Glyph {

char currentChar;

Font currentFont;

Letter(char charValue, Font newFont) {

\\ Create the letter charValue. }

public abstract void draw(Context contextValue) {

\\ draw the letters at position contextValue }

public abstract void insert(Glyph glyphValue, int i) {

\\ throws an exception }

public abstract void remove(int iPosition) {

\\ throws an exception }

}

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 19

Example

public class FlyweightFactory {

Glyph[] poolLetters;

public Glyph Create(char charValue, Font newFont) {

\\ check pool to see if letter (same char and font) already exist

\\ if so, returns existing letter

\\ else creates and returns new letter

}

}

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 20

Known Uses

• Word Processors

• Guis (widgets)

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 21

Related Patterns

• Composite

• State

• Strategy

• Factory

• Singleton

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 22

Project Submission

• On April 8th (before the midterm), each team must handin a
CDROM with the following items:

– Source code for each modules (well commented)

– Compiled code (class files)

– Javadoc

– A Readme file explaining
– the content of the CDRom
– instruction on how to compile the program
– instruction on how to run the program

– Any other documentation you might find important.

• The source for each module should be clearly separated
(different directories).

• You can handin the CDRom the day of the interview, but you
will suffer a small late penalty (1 point).

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 23

Project Submission

• Don’t forget to handing any paper documentation you might
also have.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 24

Project Interview

• Project Interview will be held (tentivaly) Thursday, April 15th
and Friday, April 16th from 10h00 to 18h00.

• You team needs to sign up for a block of time. You can sign up
by sending me an email. First come, first served.

• Total time required for interview will be 30 minutes + 15
minutes per team member.

• Add an extra 15 minutes if you want to demonstrate your
program in Trottier.

• If you want to show me something that uses network, you need
to use Trottier (don’t have space in my office for multiple
laptops).

• I reserve the right to move the time slots a little.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 25

Project Interview (cont.)

Features evaluated during the interview include (but are not
limited to . . .

• Quality of documentation

• Complexity of Project

• Stability/Reliability of Project

• Ease of Use

• Modularity (Amount of coupling between modules)

• Ability to explain and justify design choices

• Abstraction (Quality of O.O. coding)

• Style of coding (repetition, indentation, ease of searching)

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 26

Summary

• Flyweights allows us to deal with situation where a large
number of objects could be required.

• There is still a lot of work to do on the project and not a lot of
time to do it.

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 27

Tool of the day: SableCC

• SableCC is an object-oriented framework that generates
compilers (and interpreters) in the Java programming language.

• Think of it as an object-oriented Java version of flex and bison.

• First, the framework uses object-oriented techniques to
automatically build a strictly typed abstract syntax tree.

• Second, the framework generates tree-walker classes using an
extended version of the visitor design pattern.

• More information on SableCC is available at:
http://www.sablecc.org/

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 28

References

• These slides are inspired (i.e. copied) from these three books.

– Design Patterns, Elements of Reusable Object-Oriented
Software; Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides; Addison Wesley; 1995

– Java Design Patterns, a Tutorial; James W. Cooper
Addison Wesly; 2000

– Design Patterns Explained, A new Perspective on Object
Oriented Design; Alan Shalloway, James R. Trott; Addison
Wesley; 2002

March 23, 2004 Lecture 20 – Comp 303 : Flyweight Page 29

