Flyweight

Comp-303 : Programming Techniques
Lecture 20

Alexandre Denault

Computer Science
McGill University
Winter 2004

March 23, 2004 Lecture 20 - Comp 303 . Flywelght Page 1

Last lecture . ..

e Facade allows us to hide a complex subsystem, thus reduce
coupling and make that subsystem easier to use.

e Adapter allows us to change the interface of a class, thus

allowing us to that class in our hieratic (polymorphic behavior).

March 23, 2004 Lecture 20 - Comp 303 . Flywelght Page 2

Typical Situation

e Today, our example starts with a word processing application.

e For added flexibility, you would like each letter in the

document to be stored as an object.

e However, representing each character as an object would create

to many object (and add a lot of overhead on the system).

e How can we have the flexibility of having each letter an object
without the overhead?

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 3

Initial Application Architecture

e The text in our word processor application is stored in three

classes: Column, Row and Letter.
e Fach document has at least one Column object.
e A Column has one or more Row.

e A Row has one or more Letter.

March 23, 2004 Lecture 20 - Comp 303 . Flywelght Page 4

Too many objects!

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 5

Flyweight

e Pattern Name : Flyweight
e (lassification : Structural

e Intent : Use sharing to support large numbers of fine-grained

objects efficiently.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 6

Motivation

e Using the FlyWeight object, we can reuse letter objects.

e The trick is to separate the intrinsic state from the extrinsic

state of each object:

— Intrinsic state: information that’s independent of the
flyweight’s context. This information should be store inside
the flyweight.

— Extrinsic state: information that depends and varies with
the flyweight’s context (thus shouldn’t be shared). This
information should be stored outside the flyweight.

e In our example, the position, the size and the font of the

character is store in the extrinsic state.

e Thus, we are able to share Letter objects.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 7

Motivation (cont.)

e Instead of using a Row for each line of text, we use a Row to
delimit text with a specific style. Thus, the font, style and size

is store in the row.
e Only 256 characters of a given font style need to be created.

e The application keeps track of a flyweight pool, thus allowing it
to reuse existing flyweights.

e Thus the number of flyweight we need is determined by the

number of styles in our document, not the document size.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 8

Motivation (cont.)

Flyweight pool

Lecture 20 — Comp 303 : Flyweight

Applicability

The Flyweight pattern’s effectiveness depends heavily on how and
where it’s used. Flyweight should only be used when all the

following are true:
e An application uses a large number of objects.
e Storage costs are high because of the sheer quantity of objects.
e Most object state can be made extrinsic.

e Objects can be replaced by few shared objects once the

extrinsic state is removed.

e The application doesn’t depend on object identity.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 10

Structure

FlyweightFactory

Cet FI ywei ght (Key) O_
)

Flyweight

i f(flyweight(key) exist

Operati on(ExtrinsicState)

s {

return existing flyweight

} else {
create new flywei ght

}

Client

B> ConcreteFlyweight IB’ UnSharedFlyweight
1
| IntrinsicState 1 IntrinsicState
1 Qperati on(ExtrinsicState) 1 Oper ati on(ExtrinsicState)
1 1
________ L !

March 23, 2004

Lecture 20 — Comp 303 : Flyweight

Page 11

Participants

e Flyweight : declares the interface that flyweights use to act on

extrinsic state.

e ConcreteFlyweight : implements the Flyweight and adds
storage for the intrinsic state (which should be sharable).

e UnsharedConcreteFlyweight: not all Flyweight need to be
shared.

e FlyweightFactory: creates and manages flyweight objects.

e Client: stores the extrinsic state of the flyweights.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 12

Collaborations

e The Client passes the extrinsic state to the flyweight when

invoking operations.

e The Client should never create a Flyweight directly. It should
always use the FlyweightFactory to create new objects.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 13

Consequences

e By increasing the amount of data that is shared, we can

increase our savings in space (memory, disk, etc).

e This saving is heavily influenced by the number of flyweight we

need to create.

e However, the use of Flyweights may introduce some

performance overhead.

e Since some data is stored outside the object, there are some

performance penalties (retrieving that data).

March 23, 2004 Lecture 20 - Comp 303 . Flywelght Page 14

Implementation

e The first step when building a flyweight is to decide what data
should be intrinsic and what data should be extrinsic.

e This decision is critical since it will heavily influence the

flyweight’s performance.

e The next step is to design the FlyweightFactory.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 15

B'lree

Times 24

Times 12

Courrier 12

Times Bold 12

Times ltalic 12

March 23, 2004

Lecture 20 — Comp 303 : Flyweight

Page 16

T

xample

public abstract class Glyph {

public abstract void draw(Context contextValue);

public abstract void insert(Glyph glyphValue, int i);

public abstract void remove(int i) ;

public abstract void SetFont(Font fontValue) ;
public abstract Font GetFont();

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 17

- |
Fxample

public class GlyphContext extends Glyph {

Glyph[] glyphList;
Font currentFont;

int index

GlyphContext () {
\\ Create an empty context }

public abstract void draw(Context contextValue) {

\\ draw all glyphs in glyphList at position contextValue }

public abstract void insert(Glyph glyphValue, int i) {
\\ adds the glyph to the context at position i}

public abstract void remove(int iPosition) {

\\ removes the context a position i from the context }

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 18

- |
Fxample

public class Letter extends Glyph {

char currentChar;

Font currentFont;

Letter(char charValue, Font newFont) {
\\ Create the letter charValue. }

public abstract void draw(Context contextValue) {

\\ draw the letters at position contextValue }

public abstract void insert(Glyph glyphValue, int i) {

\\ throws an exception }

public abstract void remove(int iPosition) {

\\ throws an exception }

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 19

T

xample

public class FlyweightFactory {

Glyph[] poolLetters;

public Glyph Create(char charValue, Font newFont) {
\\ check pool to see if letter (same char and font) already exist
\\ if so, returns existing letter

\\ else creates and returns new letter

¥

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 20

Known Uses

e Word Processors

e Guis (widgets)

March 23, 2004 Lecture 20 - Comp 303 . Flywelght Page 21

Related Patterns

e Composite
e State

e Strategy
e Fuctory

e Singleton

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 22

Project Submission

e On April 8th (before the midterm), each team must handin a
CDROM with the following items:

— Source code for each modules (well commented)
— Compiled code (class files)
— Javadoc

— A Readme file explaining

— the content of the CDRom
— instruction on how to compile the program

— instruction on how to run the program

— Any other documentation you might find important.

e The source for each module should be clearly separated

(different directories).

e You can handin the CDRom the day of the interview, but you
will suffer a small late penalty (1 point).

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 23

Project Submission

e Don’t forget to handing any paper documentation you might

also have.

March 23, 2004 Lecture 20 - Comp 303 . Flywelght Page 24

Project Interview

Project Interview will be held (tentivaly) Thursday, April 15th
and Friday, April 16th from 10h00 to 18h00.

You team needs to sign up for a block of time. You can sign up

by sending me an email. First come, first served.

Total time required for interview will be 30 minutes + 15

minutes per team member.

Add an extra 15 minutes if you want to demonstrate your

program in Trottier.

If you want to show me something that uses network, you need
to use Trottier (don’t have space in my office for multiple

laptops).

I reserve the right to move the time slots a little.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight

Page 25

Project Interview (cont.)

Features evaluated during the interview include (but are not

limited to ...
e QQuality of documentation
e Complexity of Project
e Stability /Reliability of Project
e Fase of Use
e Modularity (Amount of coupling between modules)
e Ability to explain and justify design choices
e Abstraction (Quality of O.0. coding)

e Style of coding (repetition, indentation, ease of searching)

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 26

Summary

e Flyweights allows us to deal with situation where a large

number of objects could be required.

e There is still a lot of work to do on the project and not a lot of

time to do it.

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 27

Tool of the day: SableCC

e SableCC is an object-oriented framework that generates

compilers (and interpreters) in the Java programming language.
e Think of it as an object-oriented Java version of flex and bison.

e First, the framework uses object-oriented techniques to

automatically build a strictly typed abstract syntax tree.
e Second, the framework generates tree-walker classes using an
extended version of the visitor design pattern.

e More information on SableCC is available at:

http://www.sablecc.org/

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 28

References

e These slides are inspired (i.e. copied) from these three books.

— Design Patterns, Elements of Reusable Object-Oriented
Software; Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides; Addison Wesley; 1995

— Java Design Patterns, a Tutorial; James W. Cooper
Addison Wesly; 2000

— Design Patterns Explained, A new Perspective on Object
Oriented Design; Alan Shalloway, James R. Trott; Addison
Wesley; 2002

March 23, 2004 Lecture 20 — Comp 303 : Flyweight Page 29

