
Factory Methods and Abstract Factories

Comp-303 : Programming Techniques

Lecture 18

Alexandre Denault
Computer Science
McGill University

Winter 2004

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 1

Last lecture . . .

• The origins of Design Patterns can be traced back to
Architecture.

• By using Design Patterns, we are re-using solutions to well
know problems.

• The Singleton pattern should be used when only one copy of an
object should be created.

• There are two ways to implement singletons in Java, each with
their own advantages.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 2

Typical Situations

• Image you are building the GUI for a new graphic intensive
application.

• Given that some users have very old computers, you want to
offer two graphical interfaces.

• However, you don’t want to create two separate applications,
since most of the code remains the same.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 3

Graphical Interface

• Your GUI was built using a fixed number of components:

– Panels

– Buttons

– Labels

– Text Boxes

– Scroll Bars

• How can you build your applications without having to code
both GUIs separately?

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 4

Abstract Factory

• Pattern Name : Abstract Factory

• Classification : Creational

• Also known as : Kit

• Intent : Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 5

Motivation

• In our example, we have two families of GUIs, a complex and a
simple one.

• Abstract Factory will allow us to build code compatible for
both GUIs.

• First step is to build two classes for each components.

– ComplexPanel and SimplePanel

– ComplexButton and SimpleButton

– ComplexLabel and SimpleLabel

– ComplexTextBox and SimpleTextBox

– ComplexScrollBar and SimpleScrollBar

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 6

Motivation (cont.)

GuiFactory

+CreateButton()

+CreateTextBox()

SimpleGuiFactory

+CreateButton()

+CreateTextBox()

ComplexeGuiFactory

+CreateButton()

+CreateTextBox()

Button

ComplexeButtonSimpleButton

TextBox

ComplexeTextBoxSimpleTextBox

Application

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 7

Motivation (cont.)

• Users would only know about the GuiFactory, TextBox and
Button classes.

• Depending on the type of Factory that is actually create, we
would be using either Simple objects or Complex objects.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 8

Applicability

The Abstract Factory pattern should be used when . . .

• . . . a system should be independent of how its products are
created, composed and represented.

• . . . a system should be configured with one of multiple families
of products.

• . . . a family of related product objects is designed to be used
together, and you need to enforce this constant.

• . . . you want to provide a class library of products, and you
want to reveal just their interfaces, not their implementations.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 9

Structure

AbstractFactory

+CreateProductA()

+CreateProductB()

ConcreteFactory2

+CreateProductA()

+CreateProductB()

ConcreteFactory1

+CreateProductA()

+CreateProductB()

AbstractProductA

ProductA1ProductA2

AbstractProductB

ProductB1ProductB2

Application

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 10

Participants

• Abstract Factory: declares an interface for operations that
create abstract products objects.

• Concrete Factory: implements the operations to create
concrete products objects.

• Abstract Product: declares an interface for a type of product
object.

• Concrete Product: defines a product object to be create by
corresponding concrete factory.

• Application: uses only the Abstract Factory and the Abstract
Product.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 11

Collaborations

• In a normal situation, only one concrete factory should exist at
any given time.

• However, if an application requires objects from both family,
then a second concrete factory must be created.

• Even though the application uses abstract factory, objects are
create by concrete factory.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 12

Consequences

• The concrete class are easy to isolate. You can make sure that
only one family of class can be created.

• You can change between families pretty easily.

• You get an increase consistency with your concrete objects.

• It is difficult to add new products.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 13

Implementation

• Factories are typically singletons. You should only have one
factory at any given time.

• The abstract factory and the abstract products should be
interfaces or abstract classes. You should not be able to
instantiate them.

• Concrete factories are subclasses of the abstract factory.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 14

Example

public abstract class GuiFactory {

public abstract Button createButton();

public abstract TextBox createTextBox();

}

public abstract class Button {

// Insert methods related to button here

public abstract void draw();

}

public abstract class TextBox {

// Insert methods related to TextBox here

public abstract void draw();

}

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 15

Using the example

...

FactoryGui myGui = SimpleFactoryGui.instance();

Button myButton = myGui.createButton();

TextBox myTextBox = myGui.createTextBox();

myButton.draw();

myTextBox.draw();

...

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 16

Known Uses

• Many graphic interfaces uses the abstract factory patterns.

• It allows them to change the motif the screen without having
to rewrite the application.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 17

Related Patterns

• Factory Methods

• Singleton

• Prototype

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 18

Something simpler

• In some situation, building an abstract factory is overkill.

• For example, we saw the Poly class with had two concrete
implementation (densePoly and sparsePoly).

• The choice between a densePoly and sparsePoly should be done
at run time.

• We only need a method to choose between two
implementations, not two families.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 19

Factory Method

• Pattern Name : Factory Method

• Classification : Creational

• Also known as : Virtual Constructor

• Intent : Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory Method
lets a class defer instantiation to subclasses.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 20

Motivation

• Consider an application that heavily uses polynomial
calculations.

• When low on memory, the application has a tendency to create
sparsePoly because they save space.

• However, sparsePoly require more time to add and multiply,
thus the application favors densePoly in normal situations.

• This application has two factory method, one that is used in
normal situations and one that is used when the application is
low on memory.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 21

Applicability

The Factory Method pattern should be used when . . .

• . . . a class can’t anticipate the class of objects it must create.

• . . . a class wants its subclasses to specify the objects it creates.

• . . . classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of which
helper subclass is the delegate.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 22

Structure

Product

ConcreteProduct

Creator

+FactoryMethod()

+AnOperation()

ConcreteCreator

+FactoryMethod()

...

product = FactoryMethod();

...

return new ConcreteProduct

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 23

Participants

• Product: define the interface of objects the factory method
creates.

• ConcreteProduct: implements the Product Interface.

• Creator: declares the factory method, which returns an object
of type Product.

• ConcreteCreator: overrides the factory method to return an
instance of a concreteProduct.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 24

Collaborations

• Creator relies on its subclass to define the factory method and
return the appropriate product.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 25

Consequences

• Provides hooks for subclasses. In other word, it’s easy to add
another decision process since we only need to subclass Creator.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 26

Implementation

• In certain case, you might want the creator class to be concrete.
This would give the method factory a default implementation.

• Some factory methods are parametrized. In other words, a
parameter is used to influence to choice of which object to
create.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 27

Example

public class PolyCreator {

public Poly createPoly(String polynomialString) {

return factory(polynomialString);

}

private Poly factory (String polynomialString) {

int i = number of terms in polynomialString

int j = highest degree of polynomialString

if (j/i > 6) {

return a densePoly

} else {

return a sparsePoly

}

}

}

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 28

Example

public class PolyCreatorLowMemory extends PolyCreator {

private Poly factory (String polynomialString) {

int i = number of terms in polynomialString

int j = highest degree of polynomialString

if (j/i > 3) {

return a densePoly

} else {

return a sparsePoly

}

}

}

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 29

Using the example

...

PolyCreator myPolyCreator;

if (free memory is low) {

myPolyCreator = new PolyCreatorLowMemory();

} else {

myPolyCreator = new PolyCreator();

}

Poly myPoly = myPolyCreator.createPoly("x^2+3*x+1");

...

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 30

Known Uses

• Factory methods are common in frameworks.

• The Java API uses some Factory methods when dealing with
I/O streams.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 31

Related Patterns

• Abstract Factory

• Template

• Prototype

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 32

Abstract Factory vs Factory Method

• Scope

– An abstract factory will product many objects of different
types (families).

– Factory method produce objects of one type.

• Variance

– An abstract factory is typically initialize only once.

– Factory methods have a tendency to change.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 33

Switch Statements

• Often, the presence of a switch statement will indicate

– the need for polymorphic behavior.

– the presence of misplaced responsibilities.

• Consider instead a more general solution such as abstraction or
giving the responsibility to other objects.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 34

Summary

• Abstract Factories allow you to use families of objects in a
generic way.

• Factory methods allow you to choose the appropriate subclass
at runtime.

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 35

Tool of the day: ProGuard

• ProGuard is a free Java class file shrinker and obfuscator.

• It can detect and remove unused classes, fields, methods, and
attributes.

• It can then rename the remaining classes, fields, and methods
using short meaningless names.

• The resulting jars are smaller and harder to reverse-engineer.

• More information on ProGuard is available at:
http://proguard.sourceforge.net/

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 36

References

• These slides are inspired (i.e. copied) from these three books.

– Design Patterns, Elements of Reusable Object-Oriented
Software; Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides; Addison Wesley; 1995

– Java Design Patterns, a Tutorial; James W. Cooper
Addison Wesly; 2000

– Design Patterns Explained, A new Perspective on Object
Oriented Design; Alan Shalloway, James R. Trott; Addison
Wesley; 2002

March 16, 2004 Lecture 18 – Comp 303 : Fact. Methods and Abstract Fact. Page 37

