
Between Design and Implementation

Comp-303 : Programming Techniques

Lecture 16

Alexandre Denault
Computer Science
McGill University

Winter 2004

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 1



Announcements

• Assignment 3 will be handed out next week.

• Only 1 month left. You should be concentrating on your
project.

• Today is the last day for software engineering. The last 6-7
classes will be dedicated to Design Patterns.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 2



Last lecture . . .

• Functional requirements:

– How does a correctly functioning program respond to
correct and incorrect user interactions?

– How does the program respond to hardware and software
errors?

• Performance requirements:

– How fast must certain actions perform?

– What are the constraints on primary and secondary storage?

• Potential modifications:

– What are likely changes or extensions to the product?

• Delivery schedule:

– Which parts of the product need to be delivered early?

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 3



The purpose of design

• The purpose of design is to define a program structure
consisting of a number of modules that

– Can be implemented independently.

– When implemented, will satisfy a requirements specification.

• The resulting structure should

– be reasonably simple

– avoid duplication of effort

– support initial program development

– support maintenance

– support modification

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 4



The goals of design

• Meet the functional and performance requirements.

• Define a modular structure:

– Define a structure that is simple & easy to implement.

– Define a structure that facilitates modifications required by
requirements analysis (modifications identified prior to
design).

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 5



The process of design

• That topic is outside the scope of this course and is best left to
a good software engineering course.

• There exist many proven software design techniques on the
market.

• An example of this would be the Rational Unified Process
which describes how to effectively deploy software using
commercially proven techniques.

• Experience is very valuable when designing software.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 6



Between Design and Implementation

• Before starting the implementation of a project, these two
considerations often arise:

– Evaluation of the design

– Choice of a program development strategy

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 7



Why evaluate our design?

• Will all implementations of the design exhibit the desired
functionality ?

• Are there implementations of the design that are inefficient ?

• Does the design describe a program structure that will make
implementations easy to build, test and maintain ?

• How difficult will it be to enhance the design to incorporate
future modifications, especially those identified during the
requirements analysis ?

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 8



Correctness & performance

• Testing and informal verification were used previously to
increase confidence that a program behaves as required.

• For designs, these are not feasible.

• Instead, we use design reviews.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 9



Design Reviews

• Design reviews . . .

– should be systematic

– should examine both local and global properties

• Local properties: specification of individual modules

– consistency

– completeness

– performance

• Global properties: how do the modules fit together?

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 10



Reviewing performance

void sort (Vector v) throws ClassCastException

// MODIFIES v

// EFFECTS: if v is not null, sorts it into

// ascending order using the compareTo method

// if some elements of v are null or are not

// comparable throws ClassCastException

• The effect clause does not specify any performance constraints.

• Allows the programmer to build the sort however he wants.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 11



Reviewing performance (cont.)

void sort (Vector v) throws ClassCastException

// MODIFIES v

// EFFECTS: if v is not null, sorts it into

// ascending order using the compareTo method

// if some elements of v are null or are not

// comparable throws ClassCastException

// worst case time = n*log(n) comparisons

// where n is the size of v

• Allows performance estimates when using sort.

• Definition is more restrictive for the implementation.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 12



Reviewing performance (cont.)

void sort (Vector v) throws ClassCastException

// MODIFIES v

// EFFECTS: if v is not null, sorts it into

// ascending order using the compareTo method

// if some elements of v are null or are not

// comparable throws ClassCastException

// worst case time = n*log(n) comparisons

// where n is the size of v

// Maximum temporary main memory allocated

// is a small constant

• Eliminates a few possible implementation.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 13



Walkthroughs

• Estimate performance of each module so that worst-case and
average efficiency estimates for whole program can be
constructed.

• Walkthroughs are laborious and imprecise.

– Designers seldom examine their own designs adequately.

– They should be performed by a team including but not
dominated by designers.

• With a small set of inputs, the team can trace through entire
design and discover gross errors in how the abstractions fit
together.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 14



Reviewing design structure

• It is also important to evaluating the appropriateness of the
module boundaries.

– Have we failed to identify an abstraction that would lead to
a better modularization ?

– Have we grouped things together that do not belong in the
same module ?

• There are no magic formula for detecting bad modularization,
but there are symptoms.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 15



Coherence of procedures

• Each procedure should represent a single coherent abstraction.

• A procedure should perform a single abstract operation on its
arguments.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 16



Signs of incoherence

• The easiest way to specify a procedure is to describe its
internal structure (how it works instead of what it does).

• If the best name you can come up with is procedure1.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 17



Type coherence

• Each type should provide an abstraction that users can
conveniently think of as a set of values and a set of methods
intimately associated with those values.

• Check each method and see whether it really belongs in a type.

• A type should be adequate: provide enough methods so that
common uses are efficient.

• Badly designed types contain methods that are not relevant to
the abstraction.

• For example, in a Stack data type, a method to square the
value of the top element would not be relevant.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 18



Communication between modules

• Modules should have narrow interfaces.

• If too much information is passed between modules, this
indicates that a type abstraction is needed.

• Even if a type is passed, we must make sure the type may be
too heavy.

– For example, passing a student record when only the
address is required.

– Instead we should provide an Address type.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 19



Reducing dependencies

• The use of narrow interfaces (e.g. no global variables) reduce
dependencies.

• Strong dependencies can be changed into weak ones using
types that do not depend on the interface.

• For example:

A Dictionary class depends strongly on the Doc class
because Dictionary.correct() calls Doc.words() to get all
the words of the document. However, if the programmer
provided Dictionary with Doc’s word iterator, Dictionary
would require no knowledge of Doc.

• Reducing dependencies reduces the risk of anomalous behavior
after modification.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 20



The development process

• Basic choice: top-down or bottom-up

• Top-down: all modules that use module M are implemented
and tested before M is implemented.

• Bottom-up: all modules used by M are implemented and tested
before M is implemented.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 21



Bottom-up

• Advantage:

– We can avoid the use of stubs (dummy code for missing
modules).

– Bottom-up may place less demand on system resources (e.g.
tests run in less memory than full system tests).

• Disadvantage:

– The next implemented module may depend on errors or
implementation specific behavior of used modules.

– Useless efforts may be spent on a module if we discover that
the previous modules are badly designed.

• Both:

– Bottom-up leads to development of useful subsystems
usually wider applicable than top-down partial systems.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 22



Top-down

• Advantage:

– We can avoid the use of drivers (testing code for modules).

– Serious design errors will be caught earlier.

– Top-down is required for type hierarchies (because we need
decide which functionality belongs in the root).

• Disadvantage:

– If the using module does not the depending module
thoroughly, specific use of a module may reveal errors.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 23



The development strategy

• A development strategy should be defined explicitly before
beginning the implementation.

• Generally a mixed strategy should be used with preference for
top-down.

• Bottom-up should be used for modules that are easier to
implement than to simulate.

• Top-down simplifies system integration and test.

• Top-down produces useful partial versions of system.

• Top-down catches critical high-level design errors early.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 24



Summary

• The purposes, goals and process of design.

• Between design and implementation, a systematic design
review should take place.

– Procedures

– Types

– Modules

• Before the implementation, several big decision must be made :
top-down vs. bottom-up.

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 25



CSGames 2004

• The event Team Software Engineering tested the
communication skills and the design skills of a team.

• The event was won or lost in the 30 first minutes.

• Teams that understood the value of design and the knew their
limit did well.

• Very few school understood this properly . . .

– Universite du Quebec en Outaouais

– McGill University

– Bishop’s University

– Queen’s University

– University of Waterloo

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 26



Tool of the day: Ant

• Ant is a Java-based build tool (like make).

• Why another build tool?

– Ant is written in Java, so it is truly multi-platform.

– Ant is extended using Java classes, not shell script.

– Ant has a simple XML file format.

• Many IDE support Ant out of the box:

– NetBeans

– jEdit

– Eclipse

– JBuilder

• More information on Ant is available at:
http://ant.apache.org/

March 10, 2004 Lecture 16 – Comp 303 : Between Design and Imp. Page 27


