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Abstract. In this paper we present a scalable networking middleware
designed for multiplayer and massively multiplayer games. We argue that
objects can implement an ideal interface between the game logic and the
communication middleware. This allows the game developer to maintain
current design techniques and apply object-oriented decomposition to
partition the game state. Game objects are mapped to duplicated ob-
jects, our units of distribution and replication of state. Sophisticated,
load-balanced, multidimensional interest management is applied to du-
plicated objects to communicate only relevant updates to player nodes.
Optimization of message sending using state prediction techniques is
performed at the attribute level of objects. At the lowest level, dupli-
cated objects communicate using a network engine that provides remote
method invocation and publish/subscribe capabilities. We outline the ar-
chitecture of two implementations of our middleware: one designed for
experiments in an academic setting, and one designed for use in an in-
dustrial setting. Finally, we present experimental results that analyze
and compare the performance of our middleware when using 3 different
low-level network architectures.

1 Introduction
Compared to a traditional multiplayer game in which usually up to 16 players
play a relatively short-lived game, massively multiplayer games (MMOGs) offer
the possibility for thousands of players to play together in a persistent world.
MMOG implementations face huge scalability problems since they have to handle
a massive number of connected players, presenting them with a consistent view
of the game world, while still providing good performance and hence, immersive
and responsive gameplay.

A flexible distributed game architecture, and an efficient and scalable net-
work infrastructure is at the heart of providing an enjoyable MMOG experience.
The implementation of a performant networking middleware and its integration
with the game logic is, however, a complicated undertaking. In this paper we
present a scalable networking middleware designed for multiplayer and massively
multiplayer games. We argue that objects can implement an ideal interface be-
tween the game logic and the communication middleware. Objects can also be
used as units of distribution and replication of state. Optimization of message
sending using state prediction techniques can be performed at the attribute level



of objects. At the lowest level, our objects communicate using a network engine
that provides remote method invocation and publish/subscribe capabilities.

Two implementations of the middleware have been realized, one in a commer-
cial and one in an academic setting, designed specifically for experimentation.
To demonstrate the usefulness of such an experimentation platform, we show
in this paper how we investigated the scalability and performance of different
low-level communication abstraction implementations.

The outline of the paper is as follows. Section 2 summarizes the challenges
particular to MMOGs. Section 3 presents our middleware approach and its 4
layers: the game objects layer, the duplicated objects layer, the communication
abstraction layer, and the transport layer. Section 4 presents two implemen-
tations of our proposed middleware. Section 5 details the experiments we ran
in order to determine the effects of different network layer implementations on
performance. Section 6 presents related work, and the last section draws some
conclusions.

2 Massively Multiplayer Online Games
In a typical multiplayer or massively multiplayer game, players collaborate or
compete in a virtual world. Each player sees a graphical representation of the
world and controls a character – an avatar – which can perform actions. Basic
building blocks of such actions are, e.g., moving the avatar, picking up objects,
or communicating with other players.

In order to provide a shared sense of space among players, each player must
maintain a copy of the (relevant) game state on his computer. When one player
performs an action that affects the world, the game state of all other players
affected by that action must be updated. This can be done either by sending the
action over the network, or by sending the effects of the action, i.e. the state of
the game that the action has modified.

2.1 Scalability Issues
The biggest challenge in massively multiplayer games is scalability: the aim is
to allow as many players as possible to play together in the same virtual world.
Typically, the number of concurrent players in an MMOG is in the thousands.
The machines of the players can be located anywhere on the world, connected
to the Internet. As a result, the quality of the network connection to individual
nodes varies: some connections exhibit a higher latency than others, meaning
that it takes more time for a message to reach its destination. Bandwidth, i.e.
the maximum throughput of data to and from a given node, is also limited, and
varies depending on the quality of the connection. Finally, any one machine on
the network has itself limited processing power and memory. On the other hand,
with each player that joins the game, a new machine is added to the game, and
hence the total available processing power and memory increases (from now on
we will call each machine participating in the game simply a node).

2.2 Consistency Issues
Massively multiplayer games are complex distributed systems. Each player inter-
acts with the game in real-time, and therefore his machine must know about the



state of the game world, at least of that part of the game state that is relevant
to him. Due to the network latency problem, this game state can unfortunately
never be 100% up to date, since the world is constantly concurrently modified
by other players. The challenge in MMOGs is to nevertheless provide a con-
sistent view of the virtual world to the players, or provide means to tolerate
inconsistencies so that they do not negatively affect the game play.

2.3 Reliability Issues

The probability of failure of a single node in a distributed system is low. However,
the probability of failure of some node in a distributed system grows with the
number of nodes. It is therefore almost certain that in a massively multiplayer
game with thousands of participating nodes failures will occur, and will occur
fairly often. In addition, network connections can temporarily fail, and as a result
some nodes might temporarily be isolated from others. An MMOG has to be able
to cope with node and network failures in such a way that the disturbance to
gameplay is minimal.

3 MMOG Middleware Abstraction Layers
People implementing a multiplayer or massively multiplayer game should be
spending most of their time developing the game itself, and hence should be iso-
lated as much as possible from low-level network programming. Network trans-
parency can however not be total: in order to be efficient, the game has to provide
detailed semantic knowledge to the network layer. Only the game programmer
knows which part of the game state is important, i.e. has to be sent over the net-
work and made available to all players. On the other hand, complex techniques
that minimize network traffic can be implemented within a middleware layer,
and the intricacies of their implementation does not have to be exposed to the
game developer.

This section presents a layered middleware architecture targeted at providing
efficient communication for MMOG games that integrates seamlessly with any
game that is based on object-oriented design. An overview of the abstraction
layers is shown in Fig. 1. The different layers are presented in the following
subsections in more detail.

3.1 Game Objects Layer

A game programmer should ideally be able to work with abstractions from the
game domain. As we have seen above, a virtual world is usually comprised of
many objects, e.g. game items and players. Game developers therefore naturally
apply object-oriented decomposition techniques to partition the game state.

In our approach, we suggest that game developers maintain this natural
object-oriented design philosophy. The resulting game objects encapsulate game
state, and provide operations to manipulate that state in a consistent way. The
developer then proceeds to map game objects to duplicated objects, an abstrac-
tion provided by our network middleware explained in more detail in the follow-
ing subsection. This mapping usually is 1 to 1, but can also be 1 to many, or many
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Fig. 1. Middleware Abstraction Layers

to one, if needed. Decisions on which part of the encapsulated state of an object
is to be communicated to other players is done at the attribute level. Configura-
tion of the communication quality can also be specified by the game developer by
attaching meta-information to object attributes. Possible quality choices affect
compression, reliability, and maximal extrapolation errors (see more details in
subsection 3.2).

Once this mapping and configuration has been established, the game can
simply invoke operations on game objects. The duplicated objects automatically
provide efficient communication by using the lower-level network layer.

3.2 Duplicated Objects Layer

Duplicated objects encapsulate that part of the state of game objects that has
to be distributed to players. Duplicated objects are also the unit of distribution:
every node that needs access to the game state encapsulated by a duplicated
object creates a new local instance of the object, a duplica. Our middleware
makes sure that the state of the duplicas of the same duplicated object are kept
up to date.
Masters and Duplicas Using duplicated objects, the state of a game object,
for instance a tomato, is replicated across player nodes. Whenever the game
executes a read operation on a game object, for instance getPosition on the
tomato, the state of the local duplica is read.

Modifying operations, however, cannot be executed locally for consistency
reasons. If local execution was allowed, it would be possible for concurrent mod-
ifications to take place, which could result in serious inconsistencies visible to the
players. For instance, if two players simultaneously decide to pickup the tomato,
only one player should succeed.



In our approach, consistency is guaranteed by designating one of the copies
of the duplicated objects as being the duplication master. Modifying operations
are always executed sequentially on the node that holds the duplication master.
After the operation finished executing, update messages are broadcast to all
duplicas.

The remote execution of modifying operations is completely transparent to
the game layer. The game simply invokes the operation on the game object: our
duplicated objects redirect the call to the duplication master node, if necessary.
This transparency is not only convenient for the programmer. It also makes it
easy to migrate the duplication master from one node to another node for load
balancing or fault tolerance reasons.

Duplication Spaces The simplest approach of distributing the duplicated ob-
jects is for each player to maintain a full copy of the game state, i.e. create
duplicas of all game objects on the player’s node. The problem with this ap-
proach is that it does not scale: as the number of players increases, the number
of messages to be sent over the network and the number of messages to be
processed by each player’s machine increase exponentially.

Since the virtual world of MMOGs is usually vast, one of the most effective
strategies to address this problem is to keep on a player’s node only the game
state that is relevant to its avatar. This usually represents only a small subset
of all duplicated objects that store the game state of the virtual world.

Of course, visibility is usually the most important criteria for determining
relevance. Visibility between two objects can be determined based on the position
of the two objects in the world, and based on the world geometry between the
objects. However, vision is not the only way an avatar can sense its environment.
An avatar can also hear an object that emits a sound, even if the object is hidden
behind a wall. Likewise, an avatar can sense other players using a radar, etc...

Our approach allows the definition of multiple duplication spaces [2], i.e.
dimensions in which objects can discover other objects, and be discovered by
other objects. For instance, 3D Geometry is an example of a duplication space
commonly used in MMOGs. An object that occupies physical space in the virtual
world is a publisher in the 3D Geometry duplication space, an object that can
see objects by observing the virtual world is a subscriber in the 3D Geometry
duplication space. Objects can simultaneously be publishers and subscribers in
one, but also in multiple duplication spaces. For example, an avatar carrying
a radio would be a publisher and subscriber in the 3D Geometry duplication
space, and a subscriber in the Radio Frequency space.

Customizable Interest Management Interest management (IM) is the pro-
cess of determining what part of the game state (and therefore which duplicated
objects) is relevant to each player [13]. The general idea of interest management
is explained in [3] as the aura-nimbus model. The aura is the area of presence of
an object in the dimension of interest. For instance, in the 3D Geometry dupli-
cation space, the aura of an avatar would be the physical space that the avatar
occupies within the virtual world. The nimbus is the space in which an object
can perceive other objects within the dimension of interest. In the 3D Geometry
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duplication space, the nimbus of an avatar covers that area of the virtual world
that lies within the vision of the avatar. If aura and nimbus is defined for each
object, interest can be determined as follows: an object A is interested in an
object B if the aura of B intersects with the nimbus of A, i.e. if the area of
presence of B lies within the area of perception of A.

In our approach, interest management boils down to matching publishers
and subscribers within a duplication space. The matching algorithm depends on
the duplication space, on the state of the publisher object and the subscriber
object, and potentially even on other game state. For instance, in the night, an
avatar wearing infrared vision goggles might see another player even in total
darkness. Our approach allows a game developer to define a custom matching
algorithm for each duplication space. This algorithm, given a publisher object
and a subscriber object, has to determine whether or not the subscriber object
is interested in the publisher object.

If it is determined that an object A is interested in object B (step 1 in Fig. 2),
the node that holds the duplication master of B is instructed to send a duplica
of B to the node with the duplication master of A (step 2 and 3 in Fig. 2).

Distributed Interest Management Interest management significantly re-
duces the amount of state update messages that have to be sent over the network,
and hence improves scalability considerably. Unfortunately, interest management
itself can easily become a performance bottleneck. As the number of publisher
and subscriber objects n in the duplication space increases, the computational
effort increases with O(n2). The computational load to perform interest man-
agement soon becomes too high to be performed by a single node. Calculating
interest management on a single node is also not a good idea because of the fact
that the node that matches a subscriber to a publisher must contain duplicas
of the two involved objects. Hence, the node that performs the interest man-
agement for the game would have to create duplicas of all objects, and would
therefore also receive and process all game state updates.

To distribute the computational effort of interest management across nodes,
a duplication space can be split into cells. A cell is a subset or subregion of a
duplication space. A cell itself is a duplicated object. The node that owns the
duplication master of a cell performs the interest management for all the objects
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located in that cell. This means, of course, that that node must create duplicas
for these objects.

Whenever an object moves within a dimension, it is possible that it crosses
the boundaries of a cell. In this case, the responsibility for performing interest
management for that object has to be transferred to the neighboring cell that
the object enters. To do this handoff in a fault-tolerant way, neighboring cell
regions have to overlap slightly. In addition, the node that holds a cell master
has duplicas of all neighboring cells. Cells are subscribers in the duplication
space, and hence the interest management algorithm will trigger whenever an
object enters the overlap region of a neighboring cell. In this case, the current
cell master node informs the object master node that it must send a duplica of
the object to the node that holds the cell master of the cell that the object is
entering.

Fig. 3 illustrates the case where a duplication space is split into two cells, cell
A and cell B. A player is currently located in cell A. The node that holds the
master of cell A is performing interest management for the player and therefore
has a duplica of the player. It also has a duplica of cell B. As the player moves in
the duplication space closer to cell B, the master node of cell A detects a match
between the player and cell B (step 1). It then instructs the master player node
to send a duplica to the master node of cell B (step 2 and 3).

Minimizing Transmitted Data As mention in section 2, limited bandwidth
and latency is one of the important problems game developers of multiplayer
and massively multiplayer games have to cope with. Our middleware provides
customizable extrapolation of attribute values of duplicated objects to minimize
bandwidth usage. Rather than updating the attribute values in duplicas each
time the value in the duplication master changes, values are predicted on the
nodes that hold duplicas using a user-customizable function. Only if our mid-
dleware realizes that the prediction is not accurate enough is the new attribute
value broadcast to all duplicas. The required precision is again user-definable,
and can be set to a constant value or even to vary according to the “distance”
between the avatar and the duplicated object within the duplication space.

Another simple way to minimize transmitted data is to publish update mes-
sages pertaining to the same object together. This saves bandwidth because the
object header does not have to be sent multiple times.



Load Balancing and Fault Tolerance Since modifying operations are always
executed on the node that holds the duplication master, the CPU usage on
machines that carry many masters could become an issue. Our middleware,
however, allows duplication masters to migrate from one node to another node
upon request. This migration is transparent to the rest of the program. Migration
allows the developers to define elaborate load balancing algorithms, if necessary.

In case of node crashes, migration is performed automatically. When a node
crashes, any duplication master that used to run on that node disappears. Our
middleware can detect such a failure, and will start to initiate a fault recovery
process. For each object that is without duplication master because of the failure,
a new duplication master is elected among the nodes that owned duplicas3.
Any pending modification requests are forwarded to the new master as soon as
possible.

Another form of fault tolerance is applied at the attribute level of duplicated
objects. For each attribute, the game developer can specify if the updates are to
be transmitted reliably or unreliably, unreliably of course being more efficient.
But even if unreliable publishing is chosen, some updates are published reliably
in order to ensure that the extrapolation algorithm mentioned in section 3.2 does
not yield wrong results in case of lost messages.

3.3 Communication Abstraction Layer

Our duplicated objects middleware layer needs to communicate with other nodes
in two situations: 1) when a modifying operation is called by the game layer on
a duplica, and 2) when the state of a duplication master object changed signifi-
cantly. For the former, a remote method execution (or reliable, synchronous mes-
saging) communication abstraction is needed. For the latter, publish / subscribe-
based messaging is the ideal communication abstraction. The two communication
means are described in the following subsections.

Remote Method Invocation (or Reliable, Synchronous Messaging)
When an operation is called on a duplicated object that modifies the object’s
state, the operation has to be executed on the state of the duplication master
object for consistency reasons (see section 3.2). To facilitate fault tolerance and
master migration, remote execution should however be transparent for the caller
of the operation4.

Method calls are usually synchronous, i.e. the calling thread returns from the
call once the method has executed, possibly carrying a return value. In addition,
method calls provide exactly once semantics, i.e., when a call returns, then the
method was executed exactly one single time. Finally, remote method executions
must be reliable, i.e., even in case of node failures, a remote method call that
successfully returns has indeed changed the state of the object on the node of
the duplication master.

3 It is possible to force our middleware to at least maintain n duplicas for each dupli-
cated objects in order to be able to tolerate n-1 crash failures.

4 Apart, of course, from the additional communication time needed.



In case an operation does not have a return value (which includes any ex-
ceptions that the method could throw), it is possible to optimize performance
by executing the call asynchronously. In such a case, however, reliability and
exactly once semantics are still required.
Publish / Subscribe After a modifying operation has changed the state of
a duplication master significantly5, the state of all duplicas has to be updated.
A channel or topic-based publish / subscribe communication abstraction can
achieve this task in an elegant way.

In a publish / subscribe system, a large number of subscriber nodes can
express interest in a certain channel or topic. Once subscribed, a node receives
any publications or events published on that channel or topic. The publish /
subscribe communication paradigm is highly flexible and scalable due to the
fact that publisher nodes and subscriber nodes are completely decoupled, and
communication is asynchronous. Publisher nodes do not know about subscriber
nodes, and subscribers do not have to know about publishers. Publishers do not
have to wait for all the subscriber nodes after announcing an event. Finally, there
is no need for any node, be it publisher or subscriber, to have global knowledge
about the network topology. This property is essential for implementing a fault-
tolerant publish / subscribe system.

In our middleware, a new topic is created and assigned to each duplicated
object. The duplication master node publishes every significant state change of
the duplication master object on the corresponding topic. Nodes that have a
duplica of an object subscribe to the corresponding topic and thus receive all
important state change events.
Integrating RMI and Publish / Subscribe A special situation that compro-
mises consistency if not addressed properly arises when a modifying operation
is initiated on a node that contains a duplica. In general, after a method has
executed, the caller of the method expects that the state of the object reflects
the execution of the call, e.g., if a read-only method is called on the object subse-
quently. In our system, however, the duplication master publishes the new state
of the object when the call has executed on the master node, and the state of the
duplica is only updated when the publication reaches the node of the duplica.
Therefore, our middleware must make sure that read-only methods executed af-
ter a modifying operation are only allowed to proceed on the duplica once the
state update corresponding to the modifying operation has been received from
the master node.

3.4 Network Layer
At the lowest level, the network layer provides point-to-point unreliable messag-
ing. The NAT traversal component helps to establish connections even between
clients that are behind firewalls. A message bundling component groups mes-
sages destined to the same node together. Finally, a compression components
compresses messages before they are sent, and decompresses them upon arrival
at the destination node.
5 Significantly means here that the predicted value based on the extrapolation tech-

niques described in section 3.2 would lie outside the acceptable tolerance interval.
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4 Middleware Implementations

This section presents two implementations of the middleware described in sec-
tion 3. The first one was created at McGill University in an academic setting
as part of the Mammoth framework. The second one, Net-Z, is a commercial
middleware for multiplayer games provided by Quazal.

4.1 Mammoth

Mammoth is a massively multiplayer game research framework. It was created as
a collaborative project between a group of McGill professors and students in early
2005, and has evolved considerably during the last 3 years. Its goal is to provide
an implementation platform for academic research related to multiplayer and
massively multiplayer games in the fields of distributed systems, fault tolerance,
databases, networking, and concurrency.

In order to allow researchers to easily conduct experiments, the Mammoth
framework has been designed as a collection of collaborating components that
each provide a well-defined set of services. The components interact with each
other through two types of well-defined interfaces, engines and managers. The
general architecture is depicted in Fig. 4.

The architecture of Mammoth follows the Model-View-Controller paradigm.
The state of the world is contained inside model objects, which are then dis-
tributed to various view and controller components. View components are used
to monitor and record the state of the world, as opposed to controller components
who alter the state of the world.

Our middleware approach, implemented in the Replication Engine and the
Network Engine (see central components of Fig. 4), is at the heart of this ar-
chitecture, as it provides the bridge between the model, the views and the con-
trollers. The Replication Engine implements duplicated objects as described in
section 3.2. As such, it takes care of managing the distributing duplicated ob-
jects, managing the duplication spaces, object migration, and initiating interest
management. The actual interest management algorithms are coordinated by the
Interest Manager component, located within the Replication Engine. The Net-
work Engine implements remote method invocation and a publish / subscribe
service as described in section 3.3. Details on 3 different implementations of the
network engine are given in section 5.



The mapping between game objects and duplicated objects in Mammoth
is done using a pre-processor. The developer implements his game objects in
Java, and annotates remote methods using Java attributes. The pre-processor
reads the game object class as input, and automatically generates proxies for
the master and replica objects using Java reflection.

In addition to the many functional components, Mammoth also provides mul-
tiple monitoring and logging tools to facilitate benchmarking of various charac-
teristics, such as CPU load, network performance and latency.

The implementation of Mammoth is done almost exclusively using the Java
programming language. This was a practical decision. Many researchers at the
School of Computer Science of McGill University use Java for their experiments,
and many tools have been developed for research and performance analysis in
Java. Furthermore, the cross-platform nature of Java facilitates access to Mam-
moth for the students, and makes maintenance easier. We are of course aware
that an industrial implementation of our middleware architecture using a non-
interpreted language such as C++ would provide even better performance. How-
ever, our experiments are still valid, since they provide insight into the complex-
ity of our algorithms and techniques as the number of players, game objects and
nodes increases.

4.2 Net-Z
Quazal’s Net-Z is a commercial product implementing a middleware for multi-
player games following the abstraction layers described in this paper.

The two main components of Net-Z are the runtime and the data defini-
tion language (DDL) compiler. The runtime is a portable C++ library avail-
able on the various gaming platforms (Windows, MacOSX, Linux as well as for
the Sony, Microsoft and Nintendo consoles). This runtime implements a net-
work infrastructure with the choice of a fully connected peer 2 peer model or a
client/server model, and implements the various network optimizations described
above (choice of reliable or unreliable messaging, bundling of the messages at
various levels, configurable encryption and compression, different extrapolation
models, remote method invocation).

In Net-Z, the interface between the game objects and the duplicated objects
is implemented using a data definition language (DDL) [2]. The DDL is used
to define the classes of duplicated objects that will be available to the game,
along with the data replicated for each, the policies specifying how this data is
replicated (reliable or not, using extrapolation or not), the set of the method
calls available on each duplicated object. Interest management is also specified
in this data definition language.

A sample DDL specification is given in Fig. 5. The first dataset definition
specifies a position data structure. Position updates are published unreliably, and
extrapolation techniques can be applied in order to minimize network traffic. The
second dataset definition specifies a description data structure for which updates
are published reliably, and only when requested by the game layer. The next
line defines a duplication space Geospace, for which interest management has to
be implemented by the game developer in form of a C++ method. Finally, the



dataset Position
{double x, double y, double z} unreliable, extrapolation_filter;

dataset Description {string name, uint32 type} upon_request;
dupspace GeoSpace;
doclass Avatar {
Position m_pos;
Description m_desc;
void damage(uint32 damage);
publisher in GeoSpace;
subscriber in GeoSpace;

};
Fig. 5. Sample DDL Code

doclass Avatar describes a duplicated object that has a position and a description
data structure, and a remotely callable method damage. An object of class Avatar
can be discovered, i.e. is a publisher in the Geospace, and can discover others,
i.e. is a subscriber in the Geospace.

The DDL compiler reads this definition as input and outputs a duplicated
objects layer specific to the game, in the form of a set of C++ classes corre-
sponding to the duplicated object classes that were defined in the DDL. Game
developers integrate the duplicated objects into their game by inheriting from
the generated C++ classes. The only additional required step is to link the Net-Z
run time with the executable.

5 Network Layer Experiments
Early experiments have shown that a crucial part of the middleware is the effi-
ciency of implementation of the communication abstraction layer. In particular,
we wanted to investigate the effect different network topologies would have on
the performance of our middleware. In typical client/server topologies, all clients
connect to a central hub. In contrast, in a fully connected network, every node
is directly connected to every other node. To better understand the scalability
issues of our middleware approach, these two extreme network topologies, along
with a third adaptive topology, were implemented. To evaluate the impact of the
different strategies, we used Mammoth to run scalability tests on top of these 3
different communication layer abstraction implementations.

5.1 Toile
Toile is a peer-to-peer network topology implementation of the communication
layer for the Mammoth framework. In Toile, every node is directly connected
to every other node. To simplify the implementation, a centralized rendezvous
node/application is used to manage the arrival of new members. However, this
rendezvous node is only needed when a new node wants to connect, and therefore
does not affect experimental results once the node is joined.

As is required by the Mammoth framework, Toile also provides publish/subscribe
services. Publishers are stored on a specific node, as are subscriptions to that
publisher. Thus, all traffic, include publications, subscriptions and unsubscrip-
tion requests for a given publisher must be directed to this particular node.



The Toile engine is fairly fault-tolerant when dealing with node failure. The
loss of a node is immediately detected, given that all nodes are interconnected.
In addition, the rendezvous node broadcasts an updated version of its connection
lists upon failure, so that clients can discover any missing members. However,
the rendezvous node itself is a single point of failure. Although the loss of this
node does not affect current members, no new members will be able to join the
network. In addition, Toile does not cope well with network firewalls. If a node
is unable to receive incoming connections, it cannot be part of the network.

5.2 Stern

Stern mimics a client/server style network topology implementation for the
Mammoth framework. All nodes connect to a central hub on startup, which
handles all network traffic from then on, thus forming a star topology. This re-
duces the load on the individual nodes, but of course dramatically increases the
burden on the central hub.

The implementation of a publish/subscribe system in such a network topol-
ogy is fairly straightforward: the hub also manages publications and subscrip-
tions. Although this also increase the load on the central hub, it is the most
efficient way of dispatching messages when dealing with publications. When a
node wants to publish an event, it simply has to send a publication message to
the central hub. The hub then takes care of forwarding the publication to all
subscriber nodes.

Stern has an important single point-of-failure: if the central hub fails, the
communication stops immediately. Other node failures are immediately detected
by the hub, which in turns warns remaining clients. On the other hand, the star
topology provides an efficient way of bypassing most firewalls: as long as a client
can establish an outgoing connection to the hub, it can join the network.

5.3 Postina

Postina is a peer-to-peer networking engine for the Mammoth framework de-
signed to address the scalability issues that arise when publishing states to a large
number of clients. Postina is built on top of Scribe [15, 6], a publish/subscribe
service which itself is built on top of Pastry [14], a generic, scalable and effi-
cient substrate for wide-area peer-to-peer applications. Postina implements the
additional required communication abstractions not implemented by Scribe and
Pastry, such as for example reliable remote method invocations, on top of the
unreliable communication provided by Pastry.

Nodes within Pastry form a decentralized, self-organizing and fault-tolerant
overlay network. Nodes are assigned random node ids when joining the network.
Routing tables are created at each node that allow a Pastry node to forward a
message based on its destination node id using the most efficient link to a node
that is “closer” to the destination. These routing tables are constantly maintained
to compensate for network quality fluctuations. The expected number of hops
for a message to reach its destination is log2bn, where n is the number of nodes
in the network, and b is a configuration parameter.



Scribe implements publish/subscribe on top of Pastry by organizing the
nodes for each topic into a tree-like structure. Publications are forwarded to
the top of the tree, and then distributed through the branches to all subscribers.
This greatly decreases the burden on individual nodes when distributing updates,
but increases the time required for updates to fully propagate.

Since the Pastry network topology is decentralized, there is no single point-
of-failure. However, maintaining the routing tables in the presence of network
congestions and node failures incurs significant overhead. From our experiments
we know that joining the network requires a couple of seconds, and detecting a
faulty node can require several minutes. A severe drop in performance was also
noticed at regular intervals, when the overlay network is reorganizing itself. In
addition, Postina currently has problems similar toToile with respect to fire-
walls. Although a more firewall-friendly version of Pastry is in development, the
current version of Postina requires that all nodes be able to receive incoming
communications.

5.4 Experimental Setting

We used the Mammoth platform to run our experiments on the 200 lab machines
of the School of Computer Science at McGill University. All the machines have
Pentium 4 processors, at least 2GBs of RAM, and are running Linux. We ran 4
separate experiments for each of the communication layer implementations: all
duplication master objects were distributed onto 1 server, 2 servers, 4 servers or
8 servers. In the case of Stern, an additional machine was used as the commu-
nication hub. The virtual game world included multiple obstacles, simulating a
moderately-sized semi-urban scenario.

Client machines were started gradually, one by one, to join the game and
take control of a player. Since previous experiments have shown that carefully
designed computer-controlled players generate similar network traffic to real hu-
man players [5], we used our AI component to control the avatar on the client.
The AI component was instructed to move the avatar within the world, changing
direction every 1.5 to 2.5 seconds. Since the duplication master of an avatar is
located on the server, each change in direction requires a remote method invo-
cation. On the server side, the call is executed, and the new state is published to
all interested clients. Then, the return value of the call is sent back to the client.
In all our experiments we measured the round trip time of such a RMI/Publish
call, i.e. the time spent from the client sending the RMI request to the reception
of the return value by the client.

5.5 Experimental Results
The results of our experiments are presented in the three graphs of Fig. 6. First of
all, the numbers are always above 10ms per RMI/Publish call. The performance
overhead generated by the duplicated objects layer is an order of magnitude
smaller than the time spent in the network layer and can therefore safely be
ignored. In addition, the measurements clearly show that network topology has
an important impact on performance and scalability.
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Fig. 6. Time for RMI/Publish Call

For Toile the average RMI/Publish
call takes over 100ms, even with only 10
connected clients. This is actually not sur-
prising, since the master node has to take
care of all the update publications on
its own. So even in a 10 client scenario,
the master node has to send 11 messages
(10 updates plus the return value of the
call). With only 1 server that contains
all the master objects, Toile can handle
around 80 clients before breaking down.
By adding more servers and distributing
the master objects, this limit can be aug-
mented to 120 clients for 2 servers, 150
clients for 4 servers, and 160 clients for 8
servers.

Stern on the other hand has a low
average call time when only few clients
are connected. With only 10 connected
clients, for instance, the call time is be-
low 40ms. This is due to the fact that
a server only needs to send one message
to the communication hub when publish-
ing state updates. The scalability test re-
sults are also not surprising: communica-
tion breaks down in Stern at around 130
connected clients, regardless of how many
servers are used. This is due to the fact
that even with multiple servers, all com-
munication is routed through the central hub.

The test results for Postina were unfortunately not reliable enough to draw
clear conclusions. In a single server setting we were not able to connect more
than 40 clients. We were not able to determine the cause for this problem. Pastry
simply did not allow more clients to connect, flagging them all as faulty and
ignoring them. For 2 servers the problems started at 60 clients, for 4 servers at
80, and the 8 server experiment choked at 90 connected clients. Another problem
that made our experiments less reliable is that a small percentage of messages
took very long to complete, i.e. from 3s up to 30s! We believe that this is due to
the fact that Pastry does not use FIFO waiting queues. Hence, a message can
be starved on the queue in case of a congested network link.

In order to still be able to compare Postina to the other network implemen-
tations, we removed any messages taking over 3s. The results presented in the
3rd graph of Fig. 6 are interesting. First of all, Postina provides 15ms average
RMI/Publish calls with only 10 connected clients, i.e. faster even than Stern.
Next, the more servers are added, the better the performance in a long run.



Finally, the shape of the 8 server curve reveals an interesting fact. The time for
an RMI/Publish call increases up to 30 clients, but then decreases again to reach
a new minimum at 50 clients, and then increases again. This is due to the fact
that during this experiment we allowed the network around 10 minutes of time
to self-organize, i.e. optimize the network routing tables of each node to adapt
to the current network load.

We realize that a deeper understanding of the inner workings of Pastry is
required to overcome the client limits and design new experiments that can
better reveal the potential of a decentralized, self-organizing network layer.

6 Related Work

Our work aims at an appropriate middleware design for MMOGs. Several other
authors have proposed designs in this area, covering various perspectives on
suitable game design. The most common goal is to abstract a complex network
architecture and provide a simple model or API to the game developer. Hsiao
and Yuan’s DoIT game middleware, for example, abstracts the communication
architecture and provides automatic code generation features to facilitate easy
integration of the actual game logic and the network system [10]. They base their
design on a clustered server environment, although the use of proxies for client
communications should permit arbitrary network modules.

An associated general design principle is to present an overall client/server
model, however the underlying system is implemented. The Lucid middleware
platform, for instance, provides multiple layers of abstraction for game design
[12]. The underlying network components can make use of advanced routing,
such as provided through interest management modules, but the overall model
presented is client/server. ATLAS provides a fairly comprehensive virtual world
framework based on either a client/server or hybrid peer/server environment
[11]. Here the virtual environment is assumed to be region-partitioned among
servers, with ATLAS supplying a uniform interface as well as various components
to facilitate scalability, including region and aura-based interest management,
replication (caching) control, simple mutual exclusion requirements, and load
balancing.

The RTF middleware game framework is closer to our design in its use of
a publish/subscribe system for interest management, replication and migration
system [8]. Replicated shadow object updates are automatically handled, and
RTF allows for object-based messaging through serialization, although the design
is fundamentally geared toward server-based management rather than a fine-
grained object replication per se. Our model directly exposes object replication
to the network system, permitting data-specific optimizations such as field-based
dead-reckoning.

The design of Colyseus is perhaps closest to our approach, replicating data
at the object level and filtering communication based on interest management
[4]. Their design incorporates interest-based range queries at the DHT level and
an object discovery mechanism is then responsible for gathering relevant data
at runtime, optimized by a predictive object and replica migration strategy.



The resulting consistency model is slightly weaker than ours, accommodating
tentative writes to object replicas as well as progress in the face of incomplete
replication, but allows for good, scalable performance in the FPS genre, albeit
with greater consistency concerns. MMOGs and other less real-time intensive
games, as Bharambe et al. postulate, are not as demanding and can coexist with
stronger consistency models, as we target in our design.

General frameworks have also been proposed with the specific goal of pro-
totyping more than actual game development. Fletcher et al. describe plug-
replaceable concurrency and consistency control with the goal of providing a
flexible means for exploring different game consistency models [7]. For explo-
ration of overall game network design, NGS allows for prototyping a variety of
region-based network architectures [16], including P2P and client/server designs.
Such designs allow for rapid evaluation of different parameters and designs, al-
though full game implementations are still required to consider other in-game
aspects such as realistic player movement or the impact of visibility.

Our design is partly inspired by the approach in Quazal’s commercial mid-
dleware [2], but naturally several other commercial products for game network
middleware also exist. Among the more popular is BigWorld. BigWorld is pri-
marily aimed at server cluster approaches, supporting the more traditional zone
or shard-based approaches to MMOGs with load-balancing and other scalabil-
ity improvements [1]. ZeroC provides open source and commercial variants of a
distributed communication engine which can be applied to MMOGs [9]. ZeroC
has some features similar to our design, but offers a more generic model to ac-
commodate a wide variety of potential uses—like ATLAS, ZeroC does not target
games exclusively.

7 Conclusion

A non-trivial MMOG framework is a useful vehicle for the rapidly growing worlds
of game research and development, and the design we present here accommo-
dates both research interests and practical, industrial game design. A middleware
approach alleviates game programmers from the complex issues of integrating
consistency, fault-tolerance, and other modules within a scalable system. Our
particular strategy is based on a strongly object-oriented model, which fits well
with various components, and moreover maps quite naturally to MMOG design.
By appropriately abstracting core communication issues the overall system pro-
vides a clean development model with efficient execution; modular design further
permits, as we demonstrate, an effective means for research experimentation or
design prototyping. Finally, game developers find the object-oriented approach
appealing, which is demostrated by the fact that Quazal’s Net-Z is used currently
in more than 50 commercial games.

Of course improvements to scalability are continuous in MMOGs. As we
show, high-level game topology can introduce bottlenecks in the communica-
tion system, even if the underlying architecture is highly scalable. Making a
P2P system more aware of the overlaying publish/subscribe model may improve
performance in this situation, although the impact on modularity must also be



considered for reasonable and maintainable design. Our current work focuses
on extending the Mammoth framework to accommodate instancing and other
MMOG models that imply multiple, dynamic levels of game consistency.
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